Hildreth E C
Department of Computer Science, Wellesley College, MA 02181.
Vision Res. 1992 Jun;32(6):1177-92. doi: 10.1016/0042-6989(92)90020-j.
We present a model for recovering the direction of heading of an observer who is moving relative to a scene that may contain self-moving objects. The model builds upon an algorithm proposed by Rieger and Lawton, based on earlier work by Longuet-Higgins and Prazdny. The algorithm uses velocity differences computed in regions of high depth variation to locate the focus of expansion, which indicates the observer's heading direction. We relate the behavior of the model to psychophysical observations regarding the ability of human observers to judge heading direction, and show how the model copes with self-moving objects in the environment.
我们提出了一个模型,用于恢复相对于可能包含自行移动物体的场景移动的观察者的前进方向。该模型基于Rieger和Lawton提出的一种算法,该算法基于Longuet-Higgins和Prazdny的早期工作。该算法使用在深度变化较大的区域中计算出的速度差异来定位膨胀焦点,该焦点指示观察者的前进方向。我们将该模型的行为与关于人类观察者判断前进方向能力的心理物理学观察联系起来,并展示该模型如何应对环境中的自行移动物体。