Adams Richard D, Captain Burjor, Fu Wei, Hall Michael B, Manson Josiah, Smith Mark D, Webster Charles Edwin
Department of Chemistry and Biochemistry and the USC NanoCenter, University of South Carolina, Columbia, South Carolina 29208 USA.
J Am Chem Soc. 2004 Apr 28;126(16):5253-67. doi: 10.1021/ja039541p.
The bis-phosphine compounds M(PBut3)2, M = Pd and Pt, readily eliminate one PBut3 ligand and transfer MPBut3 groups to the ruthenium-ruthenium bonds in the compounds Ru3(CO)12, Ru6(CO)17(micro6-C), and Ru6(CO)14(eta6-C6H6)(micro6-C) without displacement of any of the ligands on the ruthenium complexes. The new compounds, Ru3(CO)12[Pd(PBut3)]3, 10, and Ru6(CO)17(micro6-C)[Pd(PBut3)]2, 11, Ru6(CO)17(micro6-C)[Pt(PBut3)]n, n = 1 (12), n = 2 (13), and Ru6(CO)14(eta6-C6H6)(micro6-C)[Pd(PBut3)]n, n = 1 (15), n = 2 (16), have been prepared and structurally characterized. In most cases the MPBut3 groups bridge a pair of mutually bonded ruthenium atoms, and the associated Ru-Ru bond distance increases in length. Fenske-Hall calculations were performed on 10 and 11 to develop an understanding of the electron deficient metal-metal bonding. 10 undergoes a Jahn-Teller distortion to increase bonding interactions between neighboring Ru(CO)4 and Pd(PBut3) fragments. 11 has seven molecular orbitals important to cluster bonding in accord with cluster electron-counting rules.