West Jonathan, Karamata Boris, Lillis Brian, Gleeson James P, Alderman John, Collins John K, Lane William, Mathewson Alan, Berney Helen
National Microelectronics Research Centre (NMRC), Cork, Ireland.
Lab Chip. 2002 Nov;2(4):224-30. doi: 10.1039/b206756k. Epub 2002 Aug 22.
Continuous flow microreactors with an annular microchannel for cyclical chemical reactions were fabricated by either bulk micromachining in silicon or by rapid prototyping using EPON SU-8. Fluid propulsion in these unusual microchannels was achieved using AC magnetohydrodynamic (MHD) actuation. This integrated micropumping mechanism obviates the use of moving parts by acting locally on the electrolyte, exploiting its inherent conductive nature. Both silicon and SU-8 microreactors were capable of MHD actuation, attaining fluid velocities of the order of 300 microm s(-1) when using a 500 mM KCl electrolyte. The polymerase chain reaction (PCR), a thermocycling process, was chosen as an illustrative example of a cyclical chemistry. Accordingly, temperature zones were provided to enable a thermal cycle during each revolution. With this approach, fluid velocity determines cycle duration. Here, we report device fabrication and performance, a model to accurately describe fluid circulation by MHD actuation, and compatibility issues relating to this approach to chemistry.
通过硅基体微加工或使用EPON SU - 8进行快速成型制造了具有用于循环化学反应的环形微通道的连续流微反应器。在这些特殊的微通道中,利用交流磁流体动力学(MHD)驱动实现流体推进。这种集成的微泵机制通过局部作用于电解质,利用其固有的导电性质,避免了使用运动部件。硅和SU - 8微反应器都能够进行MHD驱动,当使用500 mM KCl电解质时,流体速度达到约300微米每秒(-1)。聚合酶链反应(PCR)是一种热循环过程,被选作循环化学的一个示例。因此,提供了温度区域以在每次旋转期间实现热循环。通过这种方法,流体速度决定循环持续时间。在此,我们报告了器件制造和性能、一个准确描述通过MHD驱动实现流体循环的模型以及与这种化学方法相关的兼容性问题。