Monticelli Luca, Robertson Kindal M, MacCallum Justin L, Tieleman D Peter
Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada T2N 1N4.
FEBS Lett. 2004 Apr 30;564(3):325-32. doi: 10.1016/S0014-5793(04)00271-6.
The recent crystal structures of the voltage-gated potassium channel KvAP and its isolated voltage-sensing 'paddle' (composed of segments S1-S4) challenge existing models of voltage gating and raise a number of questions about the structure of the physiologically relevant state. We investigate a possible gating mechanism based on the crystal structures in a 10 ns steered molecular dynamics simulation of KvAP in a membrane-mimetic octane layer. The structure of the full KvAP protein has been modified by restraining the S2-S4 domain to the conformation of the isolated high-resolution paddle structure. After an initial relaxation, the paddle tips are pulled through the membrane from the intracellular to the extracellular side, corresponding to a putative change from closed to open. We describe the effect of this large-scale motion on the central pore domain, which remains largely unchanged, on the protein hydrogen-bonding network and on solvent. We analyze the motion of the S3b-S4 portion of the protein and propose a possible coupling mechanism between the paddle motion and the opening of the channel. Interactions between the arginine residues in S4, solvent and chloride ions are likely to play a role in the gating charge.
电压门控钾通道KvAP及其分离的电压感应“桨叶”(由S1 - S4片段组成)的最新晶体结构对现有的电压门控模型提出了挑战,并引发了许多关于生理相关状态结构的问题。我们在模拟膜的辛烷层中对KvAP进行了10纳秒的引导分子动力学模拟,基于晶体结构研究了一种可能的门控机制。通过将S2 - S4结构域限制为分离的高分辨率桨叶结构的构象,对完整的KvAP蛋白结构进行了修改。经过初始弛豫后,桨叶尖端从细胞内侧穿过膜拉向细胞外侧,这对应于从关闭到开放的假定变化。我们描述了这种大规模运动对基本保持不变的中央孔结构域、蛋白质氢键网络和溶剂的影响。我们分析了蛋白质S3b - S4部分的运动,并提出了桨叶运动与通道开放之间可能的偶联机制。S4中的精氨酸残基、溶剂和氯离子之间的相互作用可能在门控电荷中起作用。