Suppr超能文献

利用KvAP通道晶体结构开发的电压门控模型。

A model of voltage gating developed using the KvAP channel crystal structure.

作者信息

Shrivastava Indira H, Durell Stewart R, Guy H Robert

机构信息

Laboratory of Experimental and Computational Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5567, USA.

出版信息

Biophys J. 2004 Oct;87(4):2255-70. doi: 10.1529/biophysj.104.040592.

Abstract

Having inspected the crystal structure of the complete KvAP channel protein, we suspect that the voltage-sensing domain is too distorted to provide reliable information about its native tertiary structure or its interactions with the central pore-forming domain. On the other hand, a second crystal structure of the isolated voltage-sensing domain may well correspond to a native open conformation. We also observe that the paddle model of gating developed from these two structures is inconsistent with many experimental results, and suspect it to be energetically unrealistic. Here we show that the isolated voltage-sensing domain crystal structure can be docked onto the pore domain portion of the full-length KvAP crystal structure in an energetically favorable way to create a model of the open conformation. Using this as a starting point, we have developed rather conventional models of resting and transition conformations based on the helical screw mechanism for the transition from the open to the resting conformation. Our models are consistent with both theoretical considerations and experimental results.

摘要

在检查了完整的KvAP通道蛋白的晶体结构后,我们怀疑电压感应结构域扭曲过度,无法提供有关其天然三级结构或其与中央孔形成结构域相互作用的可靠信息。另一方面,分离的电压感应结构域的第二个晶体结构很可能对应于天然开放构象。我们还观察到,从这两个结构发展而来的门控桨状模型与许多实验结果不一致,并怀疑其在能量上不现实。在这里,我们表明,分离的电压感应结构域晶体结构可以以能量有利的方式对接至全长KvAP晶体结构的孔结构域部分,以创建开放构象模型。以此为起点,我们基于从开放构象到静息构象转变的螺旋机制,开发了相当传统的静息和转变构象模型。我们的模型与理论考量和实验结果均一致。

相似文献

1
A model of voltage gating developed using the KvAP channel crystal structure.
Biophys J. 2004 Oct;87(4):2255-70. doi: 10.1529/biophysj.104.040592.
2
Models of the structure and voltage-gating mechanism of the shaker K+ channel.
Biophys J. 2004 Oct;87(4):2116-30. doi: 10.1529/biophysj.104.040618.
4
KvAP-based model of the pore region of shaker potassium channel is consistent with cadmium- and ligand-binding experiments.
Biophys J. 2005 Aug;89(2):1020-9. doi: 10.1529/biophysj.105.062240. Epub 2005 May 20.
7
S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels.
Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5020-5. doi: 10.1073/pnas.0501051102. Epub 2005 Mar 17.
9
The voltage-sensor structure in a voltage-gated channel.
Trends Biochem Sci. 2005 Apr;30(4):166-8. doi: 10.1016/j.tibs.2005.02.006.
10
Global twisting motion of single molecular KcsA potassium channel upon gating.
Cell. 2008 Jan 11;132(1):67-78. doi: 10.1016/j.cell.2007.11.040.

引用本文的文献

1
Exploring Flexibility and Folding Patterns Throughout Time in Voltage Sensors.
J Mol Evol. 2023 Dec;91(6):819-836. doi: 10.1007/s00239-023-10140-1. Epub 2023 Nov 13.
2
Voltage-dependent gating in K channels: experimental results and quantitative models.
Pflugers Arch. 2020 Jan;472(1):27-47. doi: 10.1007/s00424-019-02336-6. Epub 2019 Dec 20.
3
Normal mode dynamics of voltage-gated K(+) channels: gating principle, opening mechanism, and inhibition.
J Comput Neurosci. 2015 Feb;38(1):83-8. doi: 10.1007/s10827-014-0527-3. Epub 2014 Sep 16.
4
Kinetics and thermodynamics of membrane protein folding.
Biomolecules. 2014 Mar 18;4(1):354-73. doi: 10.3390/biom4010354.
5
Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances.
Arch Toxicol. 2012 Feb;86(2):165-81. doi: 10.1007/s00204-011-0726-x. Epub 2011 Jun 28.
7
Structural models of TREK channels and their gating mechanism.
Channels (Austin). 2011 Jan-Feb;5(1):23-33. doi: 10.4161/chan.5.1.13905. Epub 2011 Jan 1.
8
Down-state model of the voltage-sensing domain of a potassium channel.
Biophys J. 2010 Jun 16;98(12):2857-66. doi: 10.1016/j.bpj.2010.03.031.
10
Membrane mechanics as a probe of ion-channel gating mechanisms.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 1):041901. doi: 10.1103/PhysRevE.78.041901. Epub 2008 Oct 1.

本文引用的文献

1
A proton pore in a potassium channel voltage sensor reveals a focused electric field.
Nature. 2004 Feb 5;427(6974):548-53. doi: 10.1038/nature02270.
2
The orientation and molecular movement of a k(+) channel voltage-sensing domain.
Neuron. 2003 Oct 30;40(3):515-25. doi: 10.1016/s0896-6273(03)00646-9.
3
KcsA closed and open: modelling and simulation studies.
Eur Biophys J. 2004 May;33(3):238-46. doi: 10.1007/s00249-003-0355-2. Epub 2003 Oct 22.
4
A prokaryotic glutamate receptor: homology modelling and molecular dynamics simulations of GluR0.
FEBS Lett. 2003 Oct 23;553(3):321-7. doi: 10.1016/s0014-5793(03)01036-6.
5
Atomic proximity between S4 segment and pore domain in Shaker potassium channels.
Neuron. 2003 Jul 31;39(3):467-81. doi: 10.1016/s0896-6273(03)00468-9.
6
Answers and questions from the KvAP structures.
Neuron. 2003 Jul 31;39(3):395-400. doi: 10.1016/s0896-6273(03)00472-0.
7
Effective energy function for proteins in lipid membranes.
Proteins. 2003 Aug 1;52(2):176-92. doi: 10.1002/prot.10410.
8
Neuroscience. The puzzling portrait of a pore.
Science. 2003 Jun 27;300(5628):2020-2. doi: 10.1126/science.300.5628.2020.
9
Crystal structure of the potassium channel KirBac1.1 in the closed state.
Science. 2003 Jun 20;300(5627):1922-6. doi: 10.1126/science.1085028. Epub 2003 May 8.
10
The principle of gating charge movement in a voltage-dependent K+ channel.
Nature. 2003 May 1;423(6935):42-8. doi: 10.1038/nature01581.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验