Suppr超能文献

动态受体团队形成可以解释大肠杆菌中的高信号转导增益。

Dynamic receptor team formation can explain the high signal transduction gain in Escherichia coli.

作者信息

Albert Réka, Chiu Yu-Wen, Othmer Hans G

机构信息

School of Mathematics, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

Biophys J. 2004 May;86(5):2650-9. doi: 10.1016/S0006-3495(04)74321-0.

Abstract

Evolution has provided many organisms with sophisticated sensory systems that enable them to respond to signals in their environment. The response frequently involves alteration in the pattern of movement, either by directed movement, a process called taxis, or by altering the speed or frequency of turning, which is called kinesis. Chemokinesis has been most thoroughly studied in the peritrichous bacterium Escherichia coli, which has four helical flagella distributed over the cell surface, and swims by rotating them. When rotated counterclockwise the flagella coalesce into a propulsive bundle, producing a relatively straight "run," and when rotated clockwise they fly apart, resulting in a "tumble" which reorients the cell with little translocation. A stochastic process generates the runs and tumbles, and in a chemoeffector gradient, runs that carry the cell in a favorable direction are extended. The cell senses spatial gradients as temporal changes in receptor occupancy and changes the probability of counterclockwise rotation (the bias) on a fast timescale, but adaptation returns the bias to baseline on a slow timescale, enabling the cell to detect and respond to further concentration changes. The overall structure of the signal transduction pathways is well characterized in E. coli, but important details are still not understood. Only recently has a source of gain in the signal transduction network been identified experimentally, and here we present a mathematical model based on dynamic assembly of receptor teams that can explain this observation.

摘要

进化为许多生物体提供了复杂的感官系统,使它们能够对环境中的信号做出反应。这种反应通常涉及运动模式的改变,要么是通过定向运动(一种称为趋性的过程),要么是通过改变转弯的速度或频率(称为动性)。趋化性在周身鞭毛的大肠杆菌中得到了最深入的研究,这种细菌有四条螺旋状鞭毛分布在细胞表面,并通过旋转鞭毛游动。当鞭毛逆时针旋转时,它们会合并成一个推进束,产生相对笔直的“游动”,而当顺时针旋转时,它们会散开,导致“翻滚”,使细胞重新定向但几乎没有移位。一个随机过程产生游动和翻滚,在化学效应物梯度中,将细胞带向有利方向的游动会延长。细胞将空间梯度感知为受体占有率的时间变化,并在快速时间尺度上改变逆时针旋转的概率(偏差),但适应会在缓慢时间尺度上将偏差恢复到基线,使细胞能够检测并对进一步的浓度变化做出反应。大肠杆菌中信号转导途径的整体结构已得到很好的表征,但重要细节仍不清楚。直到最近,实验才确定了信号转导网络中的一个增益来源,在此我们提出一个基于受体团队动态组装的数学模型,该模型可以解释这一观察结果。

相似文献

1
Dynamic receptor team formation can explain the high signal transduction gain in Escherichia coli.
Biophys J. 2004 May;86(5):2650-9. doi: 10.1016/S0006-3495(04)74321-0.
2
Cell orientation of swimming bacteria: from theoretical simulation to experimental evaluation.
Sci China Life Sci. 2012 Mar;55(3):202-9. doi: 10.1007/s11427-012-4298-7. Epub 2012 Apr 14.
3
Hydrodynamics and direction change of tumbling bacteria.
PLoS One. 2021 Jul 20;16(7):e0254551. doi: 10.1371/journal.pone.0254551. eCollection 2021.
4
Role of tumbling in bacterial swarming.
Phys Rev E. 2017 Aug;96(2-1):022407. doi: 10.1103/PhysRevE.96.022407. Epub 2017 Aug 16.
5
Role of body rotation in bacterial flagellar bundling.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):040903. doi: 10.1103/PhysRevE.65.040903. Epub 2002 Apr 10.
6
The hydrodynamics of a run-and-tumble bacterium propelled by polymorphic helical flagella.
Biophys J. 2010 Jan 6;98(1):12-7. doi: 10.1016/j.bpj.2009.09.044.
7
Langevin equations for the run-and-tumble of swimming bacteria.
Soft Matter. 2018 May 16;14(19):3945-3954. doi: 10.1039/c8sm00252e.
8
Swimming in circles: motion of bacteria near solid boundaries.
Biophys J. 2006 Jan 15;90(2):400-12. doi: 10.1529/biophysj.105.069401. Epub 2005 Oct 20.
9
Zipping and entanglement in flagellar bundle of E. coli: Role of motile cell body.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015;92(5):052701. doi: 10.1103/PhysRevE.92.052701. Epub 2015 Nov 2.
10
Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell.
Bull Math Biol. 2008 Aug;70(6):1525-69. doi: 10.1007/s11538-008-9321-6. Epub 2008 Jul 19.

引用本文的文献

1
The source of high signal cooperativity in bacterial chemosensory arrays.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3335-40. doi: 10.1073/pnas.1600216113. Epub 2016 Mar 7.
3
A "trimer of dimers"-based model for the chemotactic signal transduction network in bacterial chemotaxis.
Bull Math Biol. 2012 Oct;74(10):2339-82. doi: 10.1007/s11538-012-9756-7. Epub 2012 Aug 4.
4
Flower development as an interplay between dynamical physical fields and genetic networks.
PLoS One. 2010 Oct 27;5(10):e13523. doi: 10.1371/journal.pone.0013523.
5
An agent-based model of signal transduction in bacterial chemotaxis.
PLoS One. 2010 May 13;5(5):e9454. doi: 10.1371/journal.pone.0009454.
6
Physical responses of bacterial chemoreceptors.
J Mol Biol. 2007 Mar 9;366(5):1416-23. doi: 10.1016/j.jmb.2006.12.024. Epub 2006 Dec 15.
7
Receptor-receptor coupling in bacterial chemotaxis: evidence for strongly coupled clusters.
Biophys J. 2006 Jun 15;90(12):4317-26. doi: 10.1529/biophysj.105.079905. Epub 2006 Mar 24.
8
Chemosensing in Escherichia coli: two regimes of two-state receptors.
Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1786-91. doi: 10.1073/pnas.0507438103. Epub 2006 Jan 30.
9
Effect of chemoreceptor modification on assembly and activity of the receptor-kinase complex in Escherichia coli.
J Bacteriol. 2004 Oct;186(19):6643-6. doi: 10.1128/JB.186.19.6643-6646.2004.

本文引用的文献

1
Quantitative modeling of sensitivity in bacterial chemotaxis: the role of coupling among different chemoreceptor species.
Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8223-8. doi: 10.1073/pnas.1330839100. Epub 2003 Jun 25.
2
Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity.
Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11611-5. doi: 10.1073/pnas.132376499. Epub 2002 Aug 19.
3
Receptor methylation controls the magnitude of stimulus-response coupling in bacterial chemotaxis.
J Biol Chem. 2002 Sep 27;277(39):36760-5. doi: 10.1074/jbc.M204325200. Epub 2002 Jul 15.
4
Subunit organization in a soluble complex of tar, CheW, and CheA by electron microscopy.
J Biol Chem. 2002 Sep 27;277(39):36755-9. doi: 10.1074/jbc.M204324200. Epub 2002 Jul 15.
5
Collaborative signaling by mixed chemoreceptor teams in Escherichia coli.
Proc Natl Acad Sci U S A. 2002 May 14;99(10):7060-5. doi: 10.1073/pnas.092071899. Epub 2002 Apr 30.
6
Receptor sensitivity in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):123-7. doi: 10.1073/pnas.011589998. Epub 2001 Dec 11.
8
Determinants of chemotactic signal amplification in Escherichia coli.
J Mol Biol. 2001 Mar 16;307(1):119-35. doi: 10.1006/jmbi.2000.4389.
9
Real-time imaging of fluorescent flagellar filaments.
J Bacteriol. 2000 May;182(10):2793-801. doi: 10.1128/JB.182.10.2793-2801.2000.
10
An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells.
Science. 2000 Mar 3;287(5458):1652-5. doi: 10.1126/science.287.5458.1652.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验