Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, USA.
Bull Math Biol. 2012 Oct;74(10):2339-82. doi: 10.1007/s11538-012-9756-7. Epub 2012 Aug 4.
The network that controls chemotaxis in Escherichia coli is one of the most completely characterized signal transduction systems to date. Receptor clustering accounts for characteristics such as high sensitivity, precise adaptation over a wide dynamic range of ligand concentrations, and robustness to variations in the amounts of intracellular proteins. To gain insights into the structure-function relationship of receptor clusters and understand the mechanism behind the high-performance signaling, we develop and analyze a model for a single trimer of dimers. This new model extends an earlier model (Spiro et al. in Proc. Natl. Acad. Sci. 94:7263-7268, 1997) to incorporate the recent experimental findings that the core structure of receptor clusters is the trimer of receptor dimers. We show that the model can reproduce most of the experimentally-observed behaviors, including excitation, adaptation, high sensitivity, and robustness to parameter variations. In addition, the model makes a number of new predictions as to how the adaptation time varies with the expression level of various proteins involved in signal transduction. Our results provide a more mechanistically-based description of the structure-function relationship for the signaling system, and show the key role of the interaction among dimer members of the trimer in the chemotactic response of cells.
调控大肠杆菌趋化性的网络是迄今为止研究得最为透彻的信号转导系统之一。受体簇集解释了一些特性,例如对配体浓度的宽动态范围具有高灵敏度、精确适应能力和对细胞内蛋白质数量变化的稳健性。为了深入了解受体簇的结构-功能关系,并理解高性能信号传递的机制,我们开发并分析了一个单体三聚体二聚体的模型。这个新模型扩展了早期的模型(Spiro 等人在 Proc. Natl. Acad. Sci. 94:7263-7268, 1997 年),纳入了受体簇核心结构是三聚体二聚体的最新实验发现。我们表明,该模型可以再现大多数实验观察到的行为,包括兴奋、适应、高灵敏度和对参数变化的稳健性。此外,该模型还对适应时间如何随参与信号转导的各种蛋白质的表达水平而变化做出了一些新的预测。我们的结果为信号转导系统的结构-功能关系提供了更具机制性的描述,并展示了三聚体中二聚体成员之间的相互作用在细胞趋化反应中的关键作用。