Suppr超能文献

移植数据:来源、收集及注意事项。

Transplant data: sources, collection, and caveats.

作者信息

Dickinson David M, Bryant Paula C, Williams M Christian, Levine Gregory N, Li Shiqian, Welch James C, Keck Berkeley M, Webb Randall L

机构信息

Scientific Registry of Transplant Recipients/University Renal Research and Education Association, Ann Arbor, MI, USA.

出版信息

Am J Transplant. 2004;4 Suppl 9:13-26. doi: 10.1111/j.1600-6135.2004.00395.x.

Abstract

By examining the sources, quality and organization of transplant data available, as well as making observations about data reporting patterns and accuracy, we hope to improve understanding of existing results, help researchers with study design and stimulate new exploratory initiatives. The primary data source, collected by the OPTN, has benefited from extensive recent technological advances. Transplant professionals now report patient and donor data more easily, quickly, and accurately, improving data timeliness and precision. Secondary sources may be incorporated, improving the accuracy and expanding the scope of analyses. For example, auxiliary mortality data allows more accurate survival analysis and conclusions regarding the completeness of center-reported post-transplant follow-up. Furthermore, such sources enable examination of outcomes not reported by centers, such as mortality after waiting list removal, providing more appropriate comparisons of waiting list and post-transplant mortality. Complex collection and reporting processes require specific analytical methods and may lead to potential pitfalls. Patterns in the timing of reporting adverse events differ from those for 'positive' events, yielding the need for care in choosing cohorts and censor dates to avoid bias. These choices are further complicated by the use of multiple sources of data, with different time lags and reporting patterns.

摘要

通过检查现有移植数据的来源、质量和组织情况,以及观察数据报告模式和准确性,我们希望增进对现有结果的理解,帮助研究人员进行研究设计,并激发新的探索性举措。由器官获取与移植网络(OPTN)收集的主要数据源,受益于近期广泛的技术进步。移植专业人员现在能够更轻松、快速且准确地报告患者和供体数据,提高了数据的及时性和精确性。可以纳入次要数据源,提高分析的准确性并扩大分析范围。例如,辅助死亡率数据可实现更准确的生存分析,并得出关于中心报告的移植后随访完整性的结论。此外,这些数据源能够对各中心未报告的结果进行检查,例如从等候名单上移除后的死亡率,从而对等候名单和移植后死亡率进行更恰当的比较。复杂的收集和报告过程需要特定的分析方法,并且可能导致潜在的陷阱。不良事件报告时间的模式与“正面”事件不同,因此在选择队列和删失日期时需要谨慎,以避免偏差。由于使用了具有不同时间滞后和报告模式的多个数据源,这些选择变得更加复杂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验