Levine G N, McCullough K P, Rodgers A M, Dickinson D M, Ashby V B, Schaubel D E
Scientific Registry of Transplant Recipients, University Renal Research and Education Association, Ann Arbor, MI, USA.
Am J Transplant. 2006;6(5 Pt 2):1228-42. doi: 10.1111/j.1600-6143.2006.01277.x.
Understanding how transplant data are collected is crucial to understanding how the data can be used. The collection and use of Organ Procurement and Transplantation Network/Scientific Registry of Transplant Recipients (OPTN/SRTR) data continues to evolve, leading to improvements in data quality, timeliness and scope while reducing the data collection burden. Additional ascertainment of outcomes completes and validates existing data, although caveats remain for researchers. We also consider analytical issues related to cohort choice, timing of data submission, and transplant center variations in follow-up data. All of these points should be carefully considered when choosing cohorts and data sources for analysis. The second part of the article describes some of the statistical methods for outcome analysis employed by the SRTR. Issues of cohort and follow-up period selection lead into a discussion of outcome definitions, event ascertainment, censoring and covariate adjustment. We describe methods for computing unadjusted mortality rates and survival probabilities, and estimating covariate effects through regression modeling. The article concludes with a description of simulated allocation modeling, developed by the SRTR for comparing outcomes of proposed changes to national organ allocation policies.
了解移植数据的收集方式对于理解如何使用这些数据至关重要。器官获取与移植网络/移植受者科学注册系统(OPTN/SRTR)数据的收集和使用不断发展,在减轻数据收集负担的同时,提高了数据质量、及时性和范围。对结果的额外确定完善并验证了现有数据,不过研究人员仍需注意一些问题。我们还考虑了与队列选择、数据提交时间以及移植中心随访数据差异相关的分析问题。在选择分析队列和数据源时,所有这些要点都应仔细考虑。文章的第二部分描述了SRTR用于结果分析的一些统计方法。队列和随访期选择问题引发了对结果定义、事件确定、删失和协变量调整的讨论。我们描述了计算未调整死亡率和生存概率以及通过回归建模估计协变量效应的方法。文章最后描述了SRTR开发的模拟分配模型,用于比较对国家器官分配政策的拟议更改的结果。