Kohar Vivek, Lu Mingyang
The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA.
NPJ Syst Biol Appl. 2018 Nov 5;4:40. doi: 10.1038/s41540-018-0076-x. eCollection 2018.
Stochasticity in gene expression impacts the dynamics and functions of gene regulatory circuits. Intrinsic noises, including those that are caused by low copy number of molecules and transcriptional bursting, are usually studied by stochastic simulations. However, the role of extrinsic factors, such as cell-to-cell variability and heterogeneity in the microenvironment, is still elusive. To evaluate the effects of both the intrinsic and extrinsic noises, we develop a method, named sRACIPE, by integrating stochastic analysis with random circuit perturbation (RACIPE) method. RACIPE uniquely generates and analyzes an ensemble of models with random kinetic parameters. Previously, we have shown that the gene expression from random models form robust and functionally related clusters. In sRACIPE we further develop two stochastic simulation schemes, aiming to reduce the computational cost without sacrificing the convergence of statistics. One scheme uses constant noise to capture the basins of attraction, and the other one uses simulated annealing to detect the stability of states. By testing the methods on several synthetic gene regulatory circuits and an epithelial-mesenchymal transition network in squamous cell carcinoma, we demonstrate that sRACIPE can interpret the experimental observations from single-cell gene expression data. We observe that parametric variation (the spread of parameters around a median value) increases the spread of the gene expression clusters, whereas high noise merges the states. Our approach quantifies the robustness of a gene circuit in the presence of noise and sheds light on a new mechanism of noise-induced hybrid states. We have implemented sRACIPE as an R package.
基因表达中的随机性影响基因调控回路的动态变化和功能。内在噪声,包括由分子低拷贝数和转录爆发引起的噪声,通常通过随机模拟进行研究。然而,外在因素的作用,如细胞间变异性和微环境中的异质性,仍然难以捉摸。为了评估内在和外在噪声的影响,我们通过将随机分析与随机电路扰动(RACIPE)方法相结合,开发了一种名为sRACIPE的方法。RACIPE独特地生成并分析具有随机动力学参数的模型集合。此前,我们已经表明,随机模型中的基因表达形成了稳健且功能相关的簇。在sRACIPE中,我们进一步开发了两种随机模拟方案,旨在在不牺牲统计收敛性的情况下降低计算成本。一种方案使用恒定噪声来捕获吸引域,另一种方案使用模拟退火来检测状态的稳定性。通过在几个合成基因调控回路和鳞状细胞癌的上皮-间质转化网络上测试这些方法,我们证明sRACIPE可以解释单细胞基因表达数据的实验观察结果。我们观察到参数变化(参数围绕中值的分布)会增加基因表达簇的分布范围,而高噪声会使状态合并。我们的方法量化了基因回路在存在噪声情况下的稳健性,并揭示了噪声诱导混合状态的新机制。我们已将sRACIPE实现为一个R包。