Forslund Karin, Morant Marc, Jørgensen Bodil, Olsen Carl Erik, Asamizu Erika, Sato Shusei, Tabata Satoshi, Bak Søren
Plant Biochemistry Laboratory, Department of Plant Biology, and Center for Molecular Plant Physiology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark.
Plant Physiol. 2004 May;135(1):71-84. doi: 10.1104/pp.103.038059.
Lotus japonicus was shown to contain the two nitrile glucosides rhodiocyanoside A and rhodiocyanoside D as well as the cyanogenic glucosides linamarin and lotaustralin. The content of cyanogenic and nitrile glucosides in L. japonicus depends on plant developmental stage and tissue. The cyanide potential is highest in young seedlings and in apical leaves of mature plants. Roots and seeds are acyanogenic. Biosynthetic studies using radioisotopes demonstrated that lotaustralin, rhodiocyanoside A, and rhodiocyanoside D are derived from the amino acid l-Ile, whereas linamarin is derived from Val. In silico homology searches identified two cytochromes P450 designated CYP79D3 and CYP79D4 in L. japonicus. The two cytochromes P450 are 94% identical at the amino acid level and both catalyze the conversion of Val and Ile to the corresponding aldoximes in biosynthesis of cyanogenic glucosides and nitrile glucosides in L. japonicus. CYP79D3 and CYP79D4 are differentially expressed. CYP79D3 is exclusively expressed in aerial parts and CYP79D4 in roots. Recombinantly expressed CYP79D3 and CYP79D4 in yeast cells showed higher catalytic efficiency with l-Ile as substrate than with l-Val, in agreement with lotaustralin and rhodiocyanoside A and D being the major cyanogenic and nitrile glucosides in L. japonicus. Ectopic expression of CYP79D2 from cassava (Manihot esculenta Crantz.) in L. japonicus resulted in a 5- to 20-fold increase of linamarin content, whereas the relative amounts of lotaustralin and rhodiocyanoside A/D were unaltered.
研究表明,百脉根中含有两种腈基糖苷——红景天苷A和红景天苷D,以及生氰糖苷亚麻苦苷和百脉根苷。百脉根中生氰糖苷和腈基糖苷的含量取决于植物的发育阶段和组织。氰化物含量在幼苗期以及成熟植株的顶端叶片中最高。根和种子则不产生氰化物。利用放射性同位素进行的生物合成研究表明,百脉根苷、红景天苷A和红景天苷D来源于氨基酸L-异亮氨酸,而亚麻苦苷来源于缬氨酸。通过计算机同源性搜索,在百脉根中鉴定出两种细胞色素P450,分别命名为CYP79D3和CYP79D4。这两种细胞色素P450在氨基酸水平上有94%的同一性,并且在百脉根生氰糖苷和腈基糖苷的生物合成过程中,二者均催化缬氨酸和异亮氨酸转化为相应的醛肟。CYP79D3和CYP79D4的表达存在差异。CYP79D3仅在地上部分表达,而CYP79D4在根中表达。在酵母细胞中重组表达的CYP79D3和CYP79D4以L-异亮氨酸为底物时,其催化效率高于以L-缬氨酸为底物时,这与百脉根苷、红景天苷A和D是百脉根中主要的生氰糖苷和腈基糖苷这一情况相符。将木薯(Manihot esculenta Crantz.)的CYP79D2在百脉根中进行异位表达,导致亚麻苦苷含量增加了5至20倍,而百脉根苷以及红景天苷A/D的相对含量未发生改变。