Suppr超能文献

负责百脉根中羟基腈糖苷生物活化的β-葡萄糖苷酶。

The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus.

作者信息

Morant Anne Vinther, Bjarnholt Nanna, Kragh Mads Emil, Kjaergaard Christian Hauge, Jørgensen Kirsten, Paquette Suzanne Michelle, Piotrowski Markus, Imberty Anne, Olsen Carl Erik, Møller Birger Lindberg, Bak Søren

机构信息

Plant Biochemistry Laboratory, Department of Plant Biology, Center for Molecular Plant Physiology and VKR Research Centre "Pro-Active Plants" , University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark.

出版信息

Plant Physiol. 2008 Jul;147(3):1072-91. doi: 10.1104/pp.107.109512. Epub 2008 May 8.

Abstract

Lotus japonicus accumulates the hydroxynitrile glucosides lotaustralin, linamarin, and rhodiocyanosides A and D. Upon tissue disruption, the hydroxynitrile glucosides are bioactivated by hydrolysis by specific beta-glucosidases. A mixture of two hydroxynitrile glucoside-cleaving beta-glucosidases was isolated from L. japonicus leaves and identified by protein sequencing as LjBGD2 and LjBGD4. The isolated hydroxynitrile glucoside-cleaving beta-glucosidases preferentially hydrolyzed rhodiocyanoside A and lotaustralin, whereas linamarin was only slowly hydrolyzed, in agreement with measurements of their rate of degradation upon tissue disruption in L. japonicus leaves. Comparative homology modeling predicted that LjBGD2 and LjBGD4 had nearly identical overall topologies and substrate-binding pockets. Heterologous expression of LjBGD2 and LjBGD4 in Arabidopsis (Arabidopsis thaliana) enabled analysis of their individual substrate specificity profiles and confirmed that both LjBGD2 and LjBGD4 preferentially hydrolyze the hydroxynitrile glucosides present in L. japonicus. Phylogenetic analyses revealed a third L. japonicus putative hydroxynitrile glucoside-cleaving beta-glucosidase, LjBGD7. Reverse transcription-polymerase chain reaction analysis showed that LjBGD2 and LjBGD4 are expressed in aerial parts of young L. japonicus plants, while LjBGD7 is expressed exclusively in roots. The differential expression pattern of LjBGD2, LjBGD4, and LjBGD7 corresponds to the previously observed expression profile for CYP79D3 and CYP79D4, encoding the two cytochromes P450 that catalyze the first committed step in the biosyntheis of hydroxynitrile glucosides in L. japonicus, with CYP79D3 expression in aerial tissues and CYP79D4 expression in roots.

摘要

百脉根积累羟基腈糖苷百脉根苷、亚麻苦苷以及红氰苷A和D。组织破坏时,羟基腈糖苷通过特定β-葡萄糖苷酶水解而被生物活化。从百脉根叶片中分离出两种切割羟基腈糖苷的β-葡萄糖苷酶混合物,并通过蛋白质测序鉴定为LjBGD2和LjBGD4。分离出的切割羟基腈糖苷的β-葡萄糖苷酶优先水解红氰苷A和百脉根苷,而亚麻苦苷仅被缓慢水解,这与在百脉根叶片组织破坏时其降解速率的测量结果一致。比较同源性建模预测,LjBGD2和LjBGD4具有几乎相同的整体拓扑结构和底物结合口袋。LjBGD2和LjBGD4在拟南芥中的异源表达能够分析它们各自的底物特异性谱,并证实LjBGD2和LjBGD4都优先水解百脉根中存在的羟基腈糖苷。系统发育分析揭示了第三种百脉根假定的切割羟基腈糖苷的β-葡萄糖苷酶LjBGD7。逆转录-聚合酶链反应分析表明,LjBGD2和LjBGD4在幼嫩百脉根植株的地上部分表达,而LjBGD7仅在根中表达。LjBGD2、LjBGD4和LjBGD7的差异表达模式与之前观察到的CYP79D3和CYP79D4的表达谱相对应,CYP79D3和CYP79D4编码两种细胞色素P450,它们催化百脉根中羟基腈糖苷生物合成的第一步,CYP79D3在地上组织中表达,CYP79D4在根中表达。

相似文献

1
The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus.
Plant Physiol. 2008 Jul;147(3):1072-91. doi: 10.1104/pp.107.109512. Epub 2008 May 8.
6
Diversification of an ancient theme: hydroxynitrile glucosides.
Phytochemistry. 2008 May;69(7):1507-16. doi: 10.1016/j.phytochem.2008.01.022. Epub 2008 Mar 14.

引用本文的文献

2
Transcriptome and MicroRNA Analysis of in Response to Low-Temperature Stress.
Int J Mol Sci. 2025 Feb 7;26(4):1401. doi: 10.3390/ijms26041401.
6
Synthesis, Antibacterial and Insecticidal Activities of Novel Capsaicin Derivatives Containing a Sulfonic Acid Esters Moiety.
Front Chem. 2022 Jun 14;10:929050. doi: 10.3389/fchem.2022.929050. eCollection 2022.
7
Regulation of dhurrin pathway gene expression during Sorghum bicolor development.
Planta. 2021 Nov 11;254(6):119. doi: 10.1007/s00425-021-03774-2.
8
The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter.
FEBS J. 2022 May;289(9):2481-2515. doi: 10.1111/febs.16135. Epub 2021 Aug 5.
9
Changes in Aphid-Plant Interactions under Increased Temperature.
Biology (Basel). 2021 May 28;10(6):480. doi: 10.3390/biology10060480.
10
Insights into Glucose-6-phosphate Allosteric Activation of β-Glucosidase A.
J Chem Inf Model. 2021 Apr 26;61(4):1931-1941. doi: 10.1021/acs.jcim.0c01450. Epub 2021 Apr 5.

本文引用的文献

4
Hydroxynitrile glucosides.
Phytochemistry. 2008 Jul;69(10):1947-61. doi: 10.1016/j.phytochem.2008.04.018. Epub 2008 Jun 6.
5
beta-Glucosidases as detonators of plant chemical defense.
Phytochemistry. 2008 Jun;69(9):1795-813. doi: 10.1016/j.phytochem.2008.03.006. Epub 2008 May 9.
6
Evidence on the molecular basis of the Ac/ac adaptive cyanogenesis polymorphism in white clover (Trifolium repens L).
Genetics. 2008 May;179(1):517-26. doi: 10.1534/genetics.107.080366. Epub 2008 May 5.
7
Cyanogenesis in plants and arthropods.
Phytochemistry. 2008 May;69(7):1457-68. doi: 10.1016/j.phytochem.2008.02.019. Epub 2008 Mar 18.
8
Diversification of an ancient theme: hydroxynitrile glucosides.
Phytochemistry. 2008 May;69(7):1507-16. doi: 10.1016/j.phytochem.2008.01.022. Epub 2008 Mar 14.
9
Bitterness in almonds.
Plant Physiol. 2008 Mar;146(3):1040-52. doi: 10.1104/pp.107.112979. Epub 2008 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验