Fenton Robert A, Chou Chung-Lin, Stewart Gavin S, Smith Craig P, Knepper Mark A
Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 6N260, Bethesda, MD 20892-1603, USA.
Proc Natl Acad Sci U S A. 2004 May 11;101(19):7469-74. doi: 10.1073/pnas.0401704101. Epub 2004 May 3.
To investigate the role of inner medullary collecting duct (IMCD) urea transporters in the renal concentrating mechanism, we deleted 3 kb of the UT-A urea transporter gene containing a single 140-bp exon (exon 10). Deletion of this segment selectively disrupted expression of the two known IMCD isoforms of UT-A, namely UT-A1 and UT-A3, producing UT-A1/3(-/-) mice. In isolated perfused IMCDs from UT-A1/3(-/-) mice, there was a complete absence of phloretin-sensitive or vasopressin-stimulated urea transport. On a normal protein intake (20% protein diet), UT-A1/3(-/-) mice had significantly greater fluid consumption and urine flow and a reduced maximal urinary osmolality relative to wild-type controls. These differences in urinary concentrating capacity were nearly eliminated when urea excretion was decreased by dietary protein restriction (4% by weight), consistent with the 1958 Berliner hypothesis stating that the chief role of IMCD urea transport in the concentrating mechanism is the prevention of urea-induced osmotic diuresis. Analysis of inner medullary tissue after water restriction revealed marked depletion of urea in UT-A1/3(-/-) mice, confirming the concept that phloretin-sensitive IMCD urea transporters play a central role in medullary urea accumulation. However, there were no significant differences in mean inner medullary Na(+) or Cl(-) concentrations between UT-A1/3(-/-) mice and wild-type controls, indicating that the processes that concentrate NaCl were intact. Thus, these results do not corroborate the predictions of passive medullary concentrating models stating that NaCl accumulation in the inner medulla depends on rapid vasopressin-regulated urea transport across the IMCD epithelium.
为了研究髓质集合管(IMCD)尿素转运体在肾脏浓缩机制中的作用,我们删除了UT-A尿素转运体基因的3 kb片段,该片段包含一个140 bp的单一外显子(外显子10)。删除该片段选择性地破坏了UT-A的两种已知IMCD异构体即UT-A1和UT-A3的表达,产生了UT-A1/3(-/-)小鼠。在来自UT-A1/3(-/-)小鼠的分离灌注IMCD中,完全不存在根皮素敏感或血管加压素刺激的尿素转运。在正常蛋白质摄入(20%蛋白质饮食)情况下,与野生型对照相比,UT-A1/3(-/-)小鼠的液体消耗量和尿流量显著增加,最大尿渗透压降低。当通过饮食蛋白质限制(重量的4%)减少尿素排泄时,这些尿浓缩能力的差异几乎消除,这与1958年柏林纳假说一致,该假说认为IMCD尿素转运在浓缩机制中的主要作用是防止尿素诱导的渗透性利尿。限水后对髓质组织的分析显示,UT-A1/3(-/-)小鼠的尿素明显减少,证实了根皮素敏感的IMCD尿素转运体在髓质尿素积累中起核心作用这一概念。然而,UT-A1/3(-/-)小鼠与野生型对照之间的平均髓质Na(+)或Cl(-)浓度没有显著差异,表明浓缩NaCl的过程是完整的。因此,这些结果并不支持被动髓质浓缩模型的预测,该模型认为内髓质中NaCl的积累依赖于血管加压素快速调节的尿素跨IMCD上皮的转运。