Suppr超能文献

使用水性银来增强紫外线消毒对噬菌体MS-2的灭活作用。

Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection.

作者信息

Butkus Michael A, Labare Michael P, Starke Jeffrey A, Moon King, Talbot Mark

机构信息

Department of Geography and Environmental Engineering, U S Military Academy, West Point, New York 10996, USA.

出版信息

Appl Environ Microbiol. 2004 May;70(5):2848-53. doi: 10.1128/AEM.70.5.2848-2853.2004.

Abstract

A synergistic effect between silver and UV radiation has been observed that can appreciably enhance the effectiveness of UV radiation for inactivation of viruses. At a fluence of ca. 40 mJ/cm(2), the synergistic effect between silver and UV was observed at silver concentrations as low as 10 microg/liter (P < 0.0615). At the same fluence, an MS-2 inactivation of ca. 3.5 logs (99.97%) was achieved at a silver concentration of 0.1 mg/liter, a significant improvement (P < 0.0001) over the ca. 1.8-log (98.42%) inactivation of MS-2 at ca. 40 mJ/cm(2) in the absence of silver. Modified Chick-Watson kinetics were used to model the synergistic effect of silver and UV radiation. For an MS-2 inactivation of 4 logs (99.99%), the coefficient of dilution (n) was determined to be 0.31, which suggests that changes in fluence have a greater influence on inactivation than does a proportionate change in silver concentration.

摘要

已观察到银与紫外线辐射之间存在协同效应,这种效应可显著提高紫外线辐射灭活病毒的效果。在约40 mJ/cm(2)的通量下,在低至10微克/升的银浓度时就观察到银与紫外线之间的协同效应(P < 0.0615)。在相同通量下,银浓度为0.1毫克/升时,MS-2的灭活率约为3.5个对数(99.97%),与在无银情况下约40 mJ/cm(2)时MS-2约1.8个对数(98.42%)的灭活率相比有显著提高(P < 0.0001)。采用修正的Chick-Watson动力学对银与紫外线辐射的协同效应进行建模。对于4个对数(99.99%)的MS-2灭活率,稀释系数(n)确定为0.31,这表明通量变化对灭活的影响比对银浓度成比例变化的影响更大。

相似文献

1
Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection.
Appl Environ Microbiol. 2004 May;70(5):2848-53. doi: 10.1128/AEM.70.5.2848-2853.2004.
2
Feasibility of the silver-UV process for drinking water disinfection.
Water Res. 2005 Dec;39(20):4925-32. doi: 10.1016/j.watres.2005.09.037. Epub 2005 Nov 22.
4
Sequential and Simultaneous Applications of UV and Chlorine for Adenovirus Inactivation.
Food Environ Virol. 2015 Sep;7(3):295-304. doi: 10.1007/s12560-015-9202-8. Epub 2015 May 26.
6
Recent Update on UV Disinfection to Fulfill the Disinfection Credit Value for Enteric Viruses in Water.
Environ Sci Technol. 2021 Dec 21;55(24):16283-16298. doi: 10.1021/acs.est.1c03092. Epub 2021 Dec 9.
7
Inactivation of coliphage MS-2 and poliovirus by copper, silver, and chlorine.
Can J Microbiol. 1992 May;38(5):430-5. doi: 10.1139/m92-072.
8
Inactivation of feline calicivirus and adenovirus type 40 by UV radiation.
Appl Environ Microbiol. 2003 Jan;69(1):577-82. doi: 10.1128/AEM.69.1.577-582.2003.

引用本文的文献

1
Sensitivity of Bacteria, Protozoa, Viruses, and Other Microorganisms to Ultraviolet Radiation.
J Res Natl Inst Stand Technol. 2021 Aug 20;126:126021. doi: 10.6028/jres.126.021. eCollection 2021.
3
Goethite and Hematite Nanoparticles Show Promising Anti-Toxoplasma Properties.
Pharmaceutics. 2024 Mar 18;16(3):413. doi: 10.3390/pharmaceutics16030413.
4
Nanoparticles as Alternatives for the Control of : A Systematic Approach to Unveil New Anti-haemonchiasis Agents.
Front Vet Sci. 2021 Dec 13;8:789977. doi: 10.3389/fvets.2021.789977. eCollection 2021.
5
Biogenic Silver Nanoparticles Can Control Infection in Both Human Trophoblast Cells and Villous Explants.
Front Microbiol. 2021 Jan 21;11:623947. doi: 10.3389/fmicb.2020.623947. eCollection 2020.
6
Inactivation of RNA and DNA viruses in water by copper and silver ions and their synergistic effect.
Water Res X. 2020 Nov 5;9:100077. doi: 10.1016/j.wroa.2020.100077. eCollection 2020 Dec 1.
8
Biocides and Novel Antimicrobial Agents for the Mitigation of Coronaviruses.
Front Microbiol. 2020 Jun 23;11:1351. doi: 10.3389/fmicb.2020.01351. eCollection 2020.
9
The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials.
Antibiotics (Basel). 2018 Jul 28;7(3):67. doi: 10.3390/antibiotics7030067.
10
Inorganic nanoparticles kill via changes in redox status and mitochondrial membrane potential.
Int J Nanomedicine. 2017 Feb 28;12:1647-1661. doi: 10.2147/IJN.S122178. eCollection 2017.

本文引用的文献

1
Susceptibility of five strains of oocysts to UV light.
J Am Water Works Assoc. 2004 Mar;96(3):84-93. doi: 10.1002/j.1551-8833.2004.tb10576.x. Epub 2004 Mar 1.
2
Detection of infectious human adenoviruses in tertiary-treated and ultraviolet-disinfected wastewater.
Water Environ Res. 2003 Mar-Apr;75(2):163-70. doi: 10.2175/106143003x140944.
3
Inactivation of feline calicivirus and adenovirus type 40 by UV radiation.
Appl Environ Microbiol. 2003 Jan;69(1):577-82. doi: 10.1128/AEM.69.1.577-582.2003.
4
Efficacy of UV irradiation in inactivating Cryptosporidium parvum oocysts.
Appl Environ Microbiol. 2002 Nov;68(11):5387-93. doi: 10.1128/AEM.68.11.5387-5393.2002.
5
UV disinfection of Giardia lamblia cysts in water.
Environ Sci Technol. 2002 Jun 1;36(11):2519-22. doi: 10.1021/es0113403.
6
Negative effect of high pH on biocidal efficacy of copper and silver ions in controlling Legionella pneumophila.
Appl Environ Microbiol. 2002 Jun;68(6):2711-5. doi: 10.1128/AEM.68.6.2711-2715.2002.
10
Inactivation of Cryptosporidium parvum oocysts using medium- and low-pressure ultraviolet radiation.
Water Res. 2001 Apr;35(6):1387-98. doi: 10.1016/s0043-1354(00)00399-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验