Suppr超能文献

用于酿酒酵母中戊糖分解代谢的磷酸酮醇酶途径的代谢工程

Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae.

作者信息

Sonderegger Marco, Schümperli Michael, Sauer Uwe

机构信息

Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland.

出版信息

Appl Environ Microbiol. 2004 May;70(5):2892-7. doi: 10.1128/AEM.70.5.2892-2897.2004.

Abstract

Low ethanol yields on xylose hamper economically viable ethanol production from hemicellulose-rich plant material with Saccharomyces cerevisiae. A major obstacle is the limited capacity of yeast for anaerobic reoxidation of NADH. Net reoxidation of NADH could potentially be achieved by channeling carbon fluxes through a recombinant phosphoketolase pathway. By heterologous expression of phosphotransacetylase and acetaldehyde dehydrogenase in combination with the native phosphoketolase, we installed a functional phosphoketolase pathway in the xylose-fermenting Saccharomyces cerevisiae strain TMB3001c. Consequently the ethanol yield was increased by 25% because less of the by-product xylitol was formed. The flux through the recombinant phosphoketolase pathway was about 30% of the optimum flux that would be required to completely eliminate xylitol and glycerol accumulation. Further overexpression of phosphoketolase, however, increased acetate accumulation and reduced the fermentation rate. By combining the phosphoketolase pathway with the ald6 mutation, which reduced acetate formation, a strain with an ethanol yield 20% higher and a xylose fermentation rate 40% higher than those of its parent was engineered.

摘要

木糖上乙醇产量低阻碍了利用酿酒酵母从富含半纤维素的植物原料中进行经济可行的乙醇生产。一个主要障碍是酵母厌氧再氧化NADH的能力有限。通过重组磷酸酮醇酶途径引导碳通量可能实现NADH的净再氧化。通过磷酸转乙酰酶和乙醛脱氢酶与天然磷酸酮醇酶的异源表达,我们在木糖发酵酿酒酵母菌株TMB3001c中建立了一条功能性磷酸酮醇酶途径。因此,乙醇产量提高了25%,因为副产物木糖醇的生成减少了。通过重组磷酸酮醇酶途径的通量约为完全消除木糖醇和甘油积累所需最佳通量的30%。然而,磷酸酮醇酶的进一步过表达增加了乙酸积累并降低了发酵速率。通过将磷酸酮醇酶途径与减少乙酸形成的ald6突变相结合,构建了一种乙醇产量比其亲本高20%且木糖发酵速率高40%的菌株。

相似文献

1
Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2004 May;70(5):2892-7. doi: 10.1128/AEM.70.5.2892-2897.2004.
5
Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2003 Oct;69(10):5892-7. doi: 10.1128/AEM.69.10.5892-5897.2003.
8
Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
J Ind Microbiol Biotechnol. 2017 Mar;44(3):387-395. doi: 10.1007/s10295-016-1899-3. Epub 2017 Jan 9.
10
Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
Biotechnol Bioeng. 2016 Dec;113(12):2587-2596. doi: 10.1002/bit.26021. Epub 2016 Sep 21.

引用本文的文献

1
Production of (R)-citramalate by engineered .
Metab Eng Commun. 2024 Aug 10;19:e00247. doi: 10.1016/j.mec.2024.e00247. eCollection 2024 Dec.
2
A comparative analysis of NADPH supply strategies in Production of d-xylitol from d-xylose as a case study.
Metab Eng Commun. 2024 Jul 5;19:e00245. doi: 10.1016/j.mec.2024.e00245. eCollection 2024 Dec.
3
Genome-scale metabolic modeling reveals metabolic trade-offs associated with lipid production in Rhodotorula toruloides.
PLoS Comput Biol. 2023 Apr 26;19(4):e1011009. doi: 10.1371/journal.pcbi.1011009. eCollection 2023 Apr.
4
Biosynthesis of value-added bioproducts from hemicellulose of biomass through microbial metabolic engineering.
Metab Eng Commun. 2022 Oct 18;15:e00211. doi: 10.1016/j.mec.2022.e00211. eCollection 2022 Dec.
5
Pathway engineering strategies for improved product yield in yeast-based industrial ethanol production.
Synth Syst Biotechnol. 2022 Jan 22;7(1):554-566. doi: 10.1016/j.synbio.2021.12.010. eCollection 2022 Mar.
7
Engineering acetyl-CoA supply and ERG9 repression to enhance mevalonate production in Saccharomyces cerevisiae.
J Ind Microbiol Biotechnol. 2021 Dec 23;48(9-10). doi: 10.1093/jimb/kuab050.
9
Metabolic engineering considerations for the heterologous expression of xylose-catabolic pathways in Saccharomyces cerevisiae.
PLoS One. 2020 Jul 27;15(7):e0236294. doi: 10.1371/journal.pone.0236294. eCollection 2020.

本文引用的文献

3
Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production.
Appl Environ Microbiol. 2003 Aug;69(8):4732-6. doi: 10.1128/AEM.69.8.4732-4736.2003.
4
A modified Saccharomyces cerevisiae strain that consumes L-Arabinose and produces ethanol.
Appl Environ Microbiol. 2003 Jul;69(7):4144-50. doi: 10.1128/AEM.69.7.4144-4150.2003.
5
Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway.
Arch Microbiol. 2003 Aug;180(2):134-41. doi: 10.1007/s00203-003-0565-0. Epub 2003 Jun 13.
6
Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway.
FEMS Yeast Res. 2003 Apr;3(2):185-9. doi: 10.1016/S1567-1356(02)00184-8.
9
Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose.
Appl Environ Microbiol. 2003 Apr;69(4):1990-8. doi: 10.1128/AEM.69.4.1990-1998.2003.
10
Functional characterization and localization of acetyl-CoA hydrolase, Ach1p, in Saccharomyces cerevisiae.
J Biol Chem. 2003 May 9;278(19):17203-9. doi: 10.1074/jbc.M213268200. Epub 2003 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验