Thiébaut Rodolphe, Jacqmin-Gadda Hélène
ISPED, INSERM E0338 Biostatistics, Université Victor Segalen Bordeaux II, 146, Rue Léo Saignat 33076, Bordeaux Cedex, France.
Comput Methods Programs Biomed. 2004 Jun;74(3):255-60. doi: 10.1016/j.cmpb.2003.08.004.
Longitudinal studies could be complicated by left-censored repeated measures. For example, in Human Immunodeficiency Virus infection, there is a detection limit of the assay used to quantify the plasma viral load. Simple imputation of the limit of the detection or of half of this limit for left-censored measures biases estimations and their standard errors. In this paper, we review two likelihood-based methods proposed to handle left-censoring of the outcome in linear mixed model. We show how to fit these models using SAS Proc NLMIXED and we compare this tool with other programs. Indications and limitations of the programs are discussed and an example in the field of HIV infection is shown.
纵向研究可能会因左删失重复测量而变得复杂。例如,在人类免疫缺陷病毒感染中,用于量化血浆病毒载量的检测方法存在检测限。对于左删失测量,简单地用检测限或其一半进行插补会使估计及其标准误产生偏差。在本文中,我们回顾了两种基于似然性的方法,这些方法被提出来处理线性混合模型中结果的左删失问题。我们展示了如何使用SAS Proc NLMIXED拟合这些模型,并将该工具与其他程序进行比较。讨论了这些程序的适用情况和局限性,并给出了一个在HIV感染领域的示例。