Marcil Michel, O'Connell Brian, Krimbou Larbi, Genest Jacques
McGill University Health Center, Royal Victoria Hospital, 687 Pine Avenue West, Montreal, H3A 1A1 QC, Canada.
Expert Rev Cardiovasc Ther. 2004 May;2(3):417-30. doi: 10.1586/14779072.2.3.417.
The plasma level of high-density lipoprotein (HDL)-cholesterol is inversely correlated with coronary artery disease, the leading cause of death worldwide. HDL particles are thought to mediate the uptake of peripheral cholesterol and, through exchange of core lipids with other lipoproteins or selective uptake by specific receptors, return this cholesterol to the liver for bile acid secretion or hormone synthesis in steroidogenic tissues. HDL particles also act on vascular processes by modulating vasomotor function, thrombosis, cell-adhesion molecule expression, platelet function, nitric oxide release, endothelial cell apoptosis and proliferation. Many of these effects involve signal transduction pathways and gene transcription. Several genetic disorders of HDLs have been characterized at the molecular level. The study of naturally occurring mutations has considerably enhanced understanding of the role of HDL particles. Some mutations causing HDL deficiency are associated with premature coronary artery disease, while others, paradoxically, may be associated with longevity. Modulation of HDL metabolism for therapeutic purposes must take into account, not only the cholesterol content of a particle but its lipid (especially phospholipid) composition, apolipoprotein content, size and charge. Current therapeutic strategies include the use of peroxisome proliferating activator receptor-alpha agonists (fibrates) that increase apolipoprotein AI production and increase lipoprotein lipase activity, statins that have a small effect on HDL-cholesterol but markedly reduce low-density lipoprotein-cholesterol, the cholesterol/HDL-cholesterol ratio and niacin that increases HDL-cholesterol. Potential therapeutic targets include inhibition of cholesteryl ester transfer protein, modulating the ATP-binding cassette A1 transporter, and decreasing HDL uptake by scavenger receptor-B1. Novel therapies include injection of purified apolipoprotien AI and short peptides taken orally, mimicking some of the biological effects of apolipoprotein AI.
高密度脂蛋白(HDL)胆固醇的血浆水平与冠状动脉疾病呈负相关,冠状动脉疾病是全球主要的死亡原因。HDL颗粒被认为介导外周胆固醇的摄取,并通过与其他脂蛋白进行核心脂质交换或被特定受体选择性摄取,将这种胆固醇返回肝脏用于胆汁酸分泌或在类固醇生成组织中进行激素合成。HDL颗粒还通过调节血管舒缩功能、血栓形成、细胞黏附分子表达、血小板功能、一氧化氮释放、内皮细胞凋亡和增殖来作用于血管过程。这些作用许多都涉及信号转导途径和基因转录。HDL的几种遗传性疾病已在分子水平上得到表征。对自然发生的突变的研究大大增进了对HDL颗粒作用的理解。一些导致HDL缺乏的突变与早发性冠状动脉疾病有关,而另一些突变,矛盾的是,可能与长寿有关。出于治疗目的对HDL代谢进行调节时,不仅必须考虑颗粒的胆固醇含量,还要考虑其脂质(尤其是磷脂)组成、载脂蛋白含量、大小和电荷。当前的治疗策略包括使用过氧化物酶体增殖物激活受体-α激动剂(贝特类药物),其可增加载脂蛋白AI的产生并增加脂蛋白脂肪酶活性;他汀类药物对HDL胆固醇有轻微影响,但可显著降低低密度脂蛋白胆固醇、胆固醇/HDL胆固醇比值;烟酸可增加HDL胆固醇。潜在的治疗靶点包括抑制胆固醇酯转运蛋白、调节ATP结合盒A1转运蛋白以及减少清道夫受体-B1对HDL的摄取。新的治疗方法包括注射纯化的载脂蛋白AI和口服短肽,以模拟载脂蛋白AI的一些生物学效应。