Drake John M, Lodge David M
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
Proc Biol Sci. 2004 Mar 22;271(1539):575-80. doi: 10.1098/rspb.2003.2629.
Biological invasions from ballast water are a severe environmental threat and exceedingly costly to society. We identify global hot spots of invasion based on worldwide patterns of ship traffic. We then estimate the rate of port-to-port invasion using gravity models for spatial interactions, and we identify bottlenecks to the regional exchange of species using the Ford-Fulkerson algorithm for network flows. Finally, using stochastic simulations of different strategies for controlling ballast-water introductions, we find that reducing the per-ship-visit chance of causing invasion is more effective in reducing the rate of biotic homogenization than eliminating key ports that are the epicentres for global spread.
压舱水导致的生物入侵是严重的环境威胁,且给社会带来高昂成本。我们基于全球船舶交通模式确定入侵的全球热点地区。然后,我们使用空间相互作用的引力模型估算港口到港口的入侵率,并使用网络流的福特 - 富尔克森算法确定物种区域交换的瓶颈。最后,通过对控制压舱水引入的不同策略进行随机模拟,我们发现,相较于消除作为全球传播中心的关键港口,降低每次船舶访问导致入侵的几率在降低生物同质化速率方面更为有效。