Suppr超能文献

多元失效时间数据的自举分析。

Bootstrap analysis of multivariate failure time data.

作者信息

Monaco Jane, Cai Jianwen, Grizzle James

机构信息

Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7420, USA.

出版信息

Stat Med. 2005 Nov 30;24(22):3387-400. doi: 10.1002/sim.2205.

Abstract

Multivariate failure time data often arise in research. Cox proportional hazards modelling is a widely used method of analysing failure time data for independent observations. However, when failure times are correlated the Cox proportional hazards model does not yield valid estimates of standard errors or significance tests. Many methods for the analysis of multivariate failure time data have been proposed. These methods commonly test hypotheses about the regression parameters, a practice which averages the treatment effect across time. The purpose of this paper is to examine the bootstrap method for obtaining standard errors in the multivariate failure time case, particularly when the focus is the survival probability or the treatment effect at a single time point such as in a surgical trial. Our motivating example comes from the Asymptomatic Carotid and Atherosclerosis Study (ACAS) in which the outcome of stroke or perioperative complications could be observed for either or both carotid arteries within each patient. Extensive simulation studies were conducted to examine the bootstrap procedure for analysing correlated failure time data under a variety of conditions including a range of treatment effects, cluster sizes, intercluster correlation values and for both proportional and non-proportional data. We found that the bootstrap method was able to estimate the standard error adequately for survival probabilities at a specific time and the standard error for the survival difference and the relative risk at a specific time. We illustrated the bootstrap method for calculating the standard error for the survival probability and statistical testing at a specific time value by analysing the two arteries per patient from the ACAS study.

摘要

多变量失效时间数据在研究中经常出现。Cox比例风险模型是一种广泛用于分析独立观测值的失效时间数据的方法。然而,当失效时间相关时,Cox比例风险模型无法得出有效的标准误差估计值或显著性检验结果。已经提出了许多用于分析多变量失效时间数据的方法。这些方法通常会检验关于回归参数的假设,这种做法会在时间上对治疗效果进行平均。本文的目的是研究在多变量失效时间情况下获取标准误差的自助法,特别是当关注点是生存概率或单个时间点的治疗效果时,比如在外科试验中。我们的激励示例来自无症状颈动脉和动脉粥样硬化研究(ACAS),在该研究中,可以观察到每个患者一侧或双侧颈动脉的中风或围手术期并发症的结果。我们进行了广泛的模拟研究,以检验在各种条件下分析相关失效时间数据的自助程序,这些条件包括一系列治疗效果、聚类大小、聚类间相关值,以及比例和非比例数据。我们发现,自助法能够充分估计特定时间的生存概率的标准误差,以及特定时间的生存差异和相对风险的标准误差。我们通过分析ACAS研究中每个患者的两条动脉,说明了计算特定时间值的生存概率的标准误差和统计检验的自助法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验