Suppr超能文献

肽-MHC结合的计算机模拟与体外分析耦合:一种能够预测超级结合肽和无锚定表位的生物信息学方法。

Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes.

作者信息

Doytchinova Irini A, Walshe Valerie A, Jones Nicola A, Gloster Simone E, Borrow Persephone, Flower Darren R

机构信息

Edward Jenner Institute for Vaccine Research-Compton, High Street, Berkshire, Compton RG20 7NN, United Kingdom.

出版信息

J Immunol. 2004 Jun 15;172(12):7495-502. doi: 10.4049/jimmunol.172.12.7495.

Abstract

The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions.

摘要

定义和操控肽与MHC分子之间相互作用的能力具有巨大的免疫学应用价值,可用于表位鉴定、疫苗设计和免疫调节。然而,目前用于预测肽-MHC结合的方法远非理想。我们最近描述了一种基于定量结构-亲和力关系方法的生物信息学预测方法在肽-MHC结合中的应用。在本研究中,我们证明了该方法的预测性和实用性。我们使用基于流式细胞术的内部MHC稳定分析法,测定了一组90个九聚体肽与MHC I类等位基因HLA-A0201的结合亲和力,并从这些数据中得出了肽与HLA-A0201分子相互作用的加和性定量结构-亲和力关系模型。然后,我们使用该模型设计了一系列高亲和力的HLA-A2结合肽。实验分析表明,所有这些肽对HLA-A*0201分子均表现出高结合亲和力,显著高于此前记录的最高值。此外,通过在主要锚定位点2和9进行系统取代,我们表明高结合肽对多种非优选氨基酸具有耐受性。我们的结果支持这样一种模型,即肽与MHC结合的亲和力由多个位置的氨基酸与MHC分子之间的相互作用决定,并且这些组分相互作用之间的焓协同作用可能会增强这种亲和力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验