Suppr超能文献

基于结构的方法预测肽-MHC 复合物的结合模式和结合亲和力。

Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes.

机构信息

Computer Science Department, Rice University, Houston, TX, United States.

School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

出版信息

Curr Top Med Chem. 2018;18(26):2239-2255. doi: 10.2174/1568026619666181224101744.

Abstract

Understanding the mechanisms involved in the activation of an immune response is essential to many fields in human health, including vaccine development and personalized cancer immunotherapy. A central step in the activation of the adaptive immune response is the recognition, by T-cell lymphocytes, of peptides displayed by a special type of receptor known as Major Histocompatibility Complex (MHC). Considering the key role of MHC receptors in T-cell activation, the computational prediction of peptide binding to MHC has been an important goal for many immunological applications. Sequence- based methods have become the gold standard for peptide-MHC binding affinity prediction, but structure-based methods are expected to provide more general predictions (i.e., predictions applicable to all types of MHC receptors). In addition, structural modeling of peptide-MHC complexes has the potential to uncover yet unknown drivers of T-cell activation, thus allowing for the development of better and safer therapies. In this review, we discuss the use of computational methods for the structural modeling of peptide-MHC complexes (i.e., binding mode prediction) and for the structure-based prediction of binding affinity.

摘要

了解免疫反应激活涉及的机制对于人类健康的许多领域至关重要,包括疫苗开发和个性化癌症免疫疗法。适应性免疫反应激活的一个中心步骤是 T 细胞淋巴细胞识别由一种特殊类型的受体(称为主要组织相容性复合体 (MHC))展示的肽。考虑到 MHC 受体在 T 细胞激活中的关键作用,预测肽与 MHC 的结合一直是许多免疫应用的重要目标。基于序列的方法已成为预测肽-MHC 结合亲和力的金标准,但基于结构的方法有望提供更通用的预测(即适用于所有类型 MHC 受体的预测)。此外,肽-MHC 复合物的结构建模有可能揭示 T 细胞激活的未知驱动因素,从而为开发更好、更安全的治疗方法提供了可能。在这篇综述中,我们讨论了计算方法在肽-MHC 复合物的结构建模(即结合模式预测)和基于结构的结合亲和力预测中的应用。

相似文献

1
Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes.
Curr Top Med Chem. 2018;18(26):2239-2255. doi: 10.2174/1568026619666181224101744.
2
Structural prediction of peptides binding to MHC class I molecules.
Proteins. 2006 Apr 1;63(1):43-52. doi: 10.1002/prot.20870.
3
Structural Prediction of Peptide-MHC Binding Modes.
Methods Mol Biol. 2022;2405:245-282. doi: 10.1007/978-1-0716-1855-4_13.
4
Predicting peptide binding to Major Histocompatibility Complex molecules.
Autoimmun Rev. 2011 Jun;10(8):469-73. doi: 10.1016/j.autrev.2011.02.003. Epub 2011 Feb 16.
5
PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions.
BMC Bioinformatics. 2006 Mar 20;7 Suppl 1(Suppl 1):S3. doi: 10.1186/1471-2105-7-S1-S3.
6
A community resource benchmarking predictions of peptide binding to MHC-I molecules.
PLoS Comput Biol. 2006 Jun 9;2(6):e65. doi: 10.1371/journal.pcbi.0020065.
7
POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
Bioinformatics. 2007 Apr 15;23(8):942-9. doi: 10.1093/bioinformatics/btm061. Epub 2007 Mar 24.
8
Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes.
PLoS One. 2010 Dec 20;5(12):e14383. doi: 10.1371/journal.pone.0014383.

引用本文的文献

1
Computational methods and data resources for predicting tumor neoantigens.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf302.
3
Advances of computational methods enhance the development of multi-epitope vaccines.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbaf055.
4
Geometric deep learning improves generalizability of MHC-bound peptide predictions.
Commun Biol. 2024 Dec 19;7(1):1661. doi: 10.1038/s42003-024-07292-1.
5
RankMHC: Learning to Rank Class-I Peptide-MHC Structural Models.
J Chem Inf Model. 2024 Dec 9;64(23):8729-8742. doi: 10.1021/acs.jcim.4c01278. Epub 2024 Nov 18.
6
Strengths and limitations of web servers for the modeling of TCRpMHC complexes.
Comput Struct Biotechnol J. 2024 Jul 1;23:2938-2948. doi: 10.1016/j.csbj.2024.06.028. eCollection 2024 Dec.
7
Can AlphaFold's breakthrough in protein structure help decode the fundamental principles of adaptive cellular immunity?
Nat Methods. 2024 May;21(5):766-776. doi: 10.1038/s41592-024-02240-7. Epub 2024 Apr 23.
8
Editorial: Quantification and prediction of T-cell cross-reactivity through experimental and computational methods.
Front Immunol. 2024 Feb 20;15:1377259. doi: 10.3389/fimmu.2024.1377259. eCollection 2024.
10
Accurate modeling of peptide-MHC structures with AlphaFold.
Structure. 2024 Feb 1;32(2):228-241.e4. doi: 10.1016/j.str.2023.11.011. Epub 2023 Dec 18.

本文引用的文献

1
Empirical Scoring Functions for Structure-Based Virtual Screening: Applications, Critical Aspects, and Challenges.
Front Pharmacol. 2018 Sep 24;9:1089. doi: 10.3389/fphar.2018.01089. eCollection 2018.
2
Microbiota - an amplifier of autoimmunity.
Curr Opin Immunol. 2018 Dec;55:15-21. doi: 10.1016/j.coi.2018.09.003. Epub 2018 Sep 22.
3
The hallmarks of successful anticancer immunotherapy.
Sci Transl Med. 2018 Sep 19;10(459). doi: 10.1126/scitranslmed.aat7807.
4
T Cell/B Cell Collaboration and Autoimmunity: An Intimate Relationship.
Front Immunol. 2018 Aug 27;9:1941. doi: 10.3389/fimmu.2018.01941. eCollection 2018.
5
Homology modeling in drug discovery: Overview, current applications, and future perspectives.
Chem Biol Drug Des. 2019 Jan;93(1):12-20. doi: 10.1111/cbdd.13388. Epub 2018 Oct 8.
6
Unintended effects of drug carriers: Big issues of small particles.
Adv Drug Deliv Rev. 2018 May;130:90-112. doi: 10.1016/j.addr.2018.06.023. Epub 2018 Jul 3.
7
Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark.
J Chem Inf Model. 2018 Aug 27;58(8):1697-1706. doi: 10.1021/acs.jcim.8b00312. Epub 2018 Jul 25.
8
MHCflurry: Open-Source Class I MHC Binding Affinity Prediction.
Cell Syst. 2018 Jul 25;7(1):129-132.e4. doi: 10.1016/j.cels.2018.05.014. Epub 2018 Jun 27.
9
Evaluating and Mitigating the Immunogenicity of Therapeutic Proteins.
Trends Biotechnol. 2018 Oct;36(10):1068-1084. doi: 10.1016/j.tibtech.2018.05.008. Epub 2018 Jun 13.
10
Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular Dynamics Simulations.
J Chem Theory Comput. 2018 Jul 10;14(7):3859-3869. doi: 10.1021/acs.jctc.8b00230. Epub 2018 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验