Suppr超能文献

细菌和古细菌趋化机制的多样性。

Diversity in chemotaxis mechanisms among the bacteria and archaea.

作者信息

Szurmant Hendrik, Ordal George W

机构信息

Department of Biochemistry, College of Medicine, University of Illinois, Urbana, IL 61801, USA.

出版信息

Microbiol Mol Biol Rev. 2004 Jun;68(2):301-19. doi: 10.1128/MMBR.68.2.301-319.2004.

Abstract

The study of chemotaxis describes the cellular processes that control the movement of organisms toward favorable environments. In bacteria and archaea, motility is controlled by a two-component system involving a histidine kinase that senses the environment and a response regulator, a very common type of signal transduction in prokaryotes. Most insights into the processes involved have come from studies of Escherichia coli over the last three decades. However, in the last 10 years, with the sequencing of many prokaryotic genomes, it has become clear that E. coli represents a streamlined example of bacterial chemotaxis. While general features of excitation remain conserved among bacteria and archaea, specific features, such as adaptational processes and hydrolysis of the intracellular signal CheY-P, are quite diverse. The Bacillus subtilis chemotaxis system is considerably more complex and appears to be similar to the one that existed when the bacteria and archaea separated during evolution, so that understanding this mechanism should provide insight into the variety of mechanisms used today by the broad sweep of chemotactic bacteria and archaea. However, processes even beyond those used in E. coli and B. subtilis have been discovered in other organisms. This review emphasizes those used by B. subtilis and these other organisms but also gives an account of the mechanism in E. coli.

摘要

趋化性研究描述了控制生物体向有利环境移动的细胞过程。在细菌和古生菌中,运动性由一个双组分系统控制,该系统涉及一个感知环境的组氨酸激酶和一个反应调节因子,这是原核生物中一种非常常见的信号转导类型。在过去三十年里,对相关过程的大多数见解都来自于对大肠杆菌的研究。然而,在过去十年中,随着许多原核生物基因组的测序,很明显大肠杆菌代表了细菌趋化性的一个简化例子。虽然兴奋的一般特征在细菌和古生菌中保持保守,但特定特征,如适应过程和细胞内信号CheY-P的水解,却大不相同。枯草芽孢杆菌的趋化性系统要复杂得多,似乎与细菌和古生菌在进化过程中分离时存在的系统相似,因此了解这一机制应该有助于深入了解当今广泛的趋化细菌和古生菌所使用的各种机制。然而,在其他生物体中还发现了甚至比大肠杆菌和枯草芽孢杆菌所使用的过程更为复杂的过程。本综述重点介绍了枯草芽孢杆菌和其他生物体所使用的过程,但也阐述了大肠杆菌中的机制。

相似文献

1
Diversity in chemotaxis mechanisms among the bacteria and archaea.
Microbiol Mol Biol Rev. 2004 Jun;68(2):301-19. doi: 10.1128/MMBR.68.2.301-319.2004.
2
Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions.
Environ Microbiol. 2010 Nov;12(11):2873-84. doi: 10.1111/j.1462-2920.2010.02325.x. Epub 2010 Aug 25.
3
The many faces of the helix-turn-helix domain: transcription regulation and beyond.
FEMS Microbiol Rev. 2005 Apr;29(2):231-62. doi: 10.1016/j.femsre.2004.12.008.
6
Sweet New Roles for Protein Glycosylation in Prokaryotes.
Trends Microbiol. 2017 Aug;25(8):662-672. doi: 10.1016/j.tim.2017.03.001. Epub 2017 Mar 21.
7
Diverse domain architectures of CheA histidine kinase, a central component of bacterial and archaeal chemosensory systems.
Microbiol Spectr. 2024 Jan 11;12(1):e0346423. doi: 10.1128/spectrum.03464-23. Epub 2023 Dec 1.
8
Structural conservation of chemotaxis machinery across Archaea and Bacteria.
Environ Microbiol Rep. 2015 Jun;7(3):414-9. doi: 10.1111/1758-2229.12265. Epub 2015 Apr 8.
9
Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea.
Curr Opin Struct Biol. 2008 Oct;18(5):544-50. doi: 10.1016/j.sbi.2008.06.010. Epub 2008 Aug 26.
10
CheX in the three-phosphatase system of bacterial chemotaxis.
J Bacteriol. 2007 Oct;189(19):7007-13. doi: 10.1128/JB.00896-07. Epub 2007 Aug 3.

引用本文的文献

1
The Molecular Basis of Amino Acids Sensing.
Adv Sci (Weinh). 2025 Jul;12(26):e2501889. doi: 10.1002/advs.202501889. Epub 2025 May 24.
5
A flagellar accessory protein links chemotaxis to surface sensing.
J Bacteriol. 2024 Nov 21;206(11):e0040424. doi: 10.1128/jb.00404-24. Epub 2024 Oct 18.
6
Enhancement of clinical signs in C3H/HeJ mice vaccinated with a highly immunogenic Leptospira methyl-accepting chemotaxis protein following challenge.
PLoS Negl Trop Dis. 2024 Sep 23;18(9):e0012155. doi: 10.1371/journal.pntd.0012155. eCollection 2024 Sep.
7
A Novel Device and Method for Assay of Bacterial Chemotaxis Towards Chemoattractants.
Indian J Microbiol. 2024 Sep;64(3):990-999. doi: 10.1007/s12088-024-01194-w. Epub 2024 Feb 24.
8
Deciphering Bacterial Chemorepulsion: The Complex Response of Microbes to Environmental Stimuli.
Microorganisms. 2024 Aug 18;12(8):1706. doi: 10.3390/microorganisms12081706.
9
A flagellar accessory protein links chemotaxis to surface sensing.
bioRxiv. 2024 Jun 20:2024.06.20.599946. doi: 10.1101/2024.06.20.599946.
10
Involvement of ArlI, ArlJ, and CirA in archaeal type IV pilin-mediated motility regulation.
J Bacteriol. 2024 Jun 20;206(6):e0008924. doi: 10.1128/jb.00089-24. Epub 2024 May 31.

本文引用的文献

1
Effect of loss of CheC and other adaptational proteins on chemotactic behaviour in Bacillus subtilis.
Microbiology (Reading). 2004 Mar;150(Pt 3):581-589. doi: 10.1099/mic.0.26463-0.
3
Receptor conformational changes enhance methylesterase activity during chemotaxis by Bacillus subtilis.
Mol Microbiol. 2004 Feb;51(3):721-8. doi: 10.1046/j.1365-2958.2003.03796.x.
5
Bacillus subtilis hydrolyzes CheY-P at the location of its action, the flagellar switch.
J Biol Chem. 2003 Dec 5;278(49):48611-6. doi: 10.1074/jbc.M306180200. Epub 2003 Aug 14.
8
Polar localization of CheA2 in Rhodobacter sphaeroides requires specific Che homologs.
J Bacteriol. 2003 Aug;185(16):4667-71. doi: 10.1128/JB.185.16.4667-4671.2003.
9
Taxing questions in development.
Trends Microbiol. 2003 Jun;11(6):239-42. doi: 10.1016/s0966-842x(03)00128-8.
10
A spatially extended stochastic model of the bacterial chemotaxis signalling pathway.
J Mol Biol. 2003 May 30;329(2):291-309. doi: 10.1016/s0022-2836(03)00437-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验