Wang Yijun, Zhang Zhiguang, Li Yong, Gao Xiaorong, Gao Shangkai, Yang Fusheng
Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
IEEE Trans Biomed Eng. 2004 Jun;51(6):1081-6. doi: 10.1109/TBME.2004.826697.
This paper presents an algorithm for classifying single-trial electroencephalogram (EEG) during the preparation of self-paced tapping. It combines common spatial subspace decomposition with Fisher discriminant analysis to extract features from multichannel EEG. Three features are obtained based on Bereitschaftspotential and event-related desynchronization. Finally, a perceptron neural network is trained as the classifier. This algorithm was applied to the data set (self-paced 1s) of "BCI Competition 2003" with a classification accuracy of 84% on the test set.
本文提出了一种在自定节奏轻敲准备过程中对单次试验脑电图(EEG)进行分类的算法。它将共同空间子空间分解与Fisher判别分析相结合,从多通道EEG中提取特征。基于 Bereitschaftspotential 和事件相关去同步化获得了三个特征。最后,训练了一个感知器神经网络作为分类器。该算法应用于“2003年脑机接口竞赛”的数据集(自定节奏1秒),在测试集上的分类准确率为84%。