Suppr超能文献

手指运动期间单试次脑电图的分类

Classification of single-trial electroencephalogram during finger movement.

作者信息

Li Yong, Gao Xiaorong, Liu Hesheng, Gao Shangkai

机构信息

Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.

出版信息

IEEE Trans Biomed Eng. 2004 Jun;51(6):1019-25. doi: 10.1109/TBME.2004.826688.

Abstract

We present an algorithm to discriminate between the single-trial electroencephalograms (EEG) of two different finger movement tasks. The method uses a spatio-temporal analysis to classify the EEG recorded during voluntary left versus right finger movement tasks. This algorithm produced a classification accuracy of 92.1% on the data from five subjects, without requiring subject training or data selection. This technique can be employed in an EEG-based brain-computer interface due to its high recognition rate, insensitivity to noise, and simplicity in computation.

摘要

我们提出了一种算法,用于区分两种不同手指运动任务的单次试验脑电图(EEG)。该方法使用时空分析来对在自愿性左手与右手手指运动任务期间记录的脑电图进行分类。该算法在来自五名受试者的数据上产生了92.1%的分类准确率,无需受试者训练或数据选择。由于其高识别率、对噪声不敏感以及计算简单,该技术可应用于基于脑电图的脑机接口。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验