Mensh Brett D, Werfel Justin, Seung H Sebastian
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
IEEE Trans Biomed Eng. 2004 Jun;51(6):1052-6. doi: 10.1109/TBME.2004.827081.
In one type of brain-computer interface (BCI), users self-modulate brain activity as detected by electroencephalography (EEG). To infer user intent, EEG signals are classified by algorithms which typically use only one of the several types of information available in these signals. One such BCI uses slow cortical potential (SCP) measures to classify single trials. We complemented these measures with estimates of high-frequency (gamma-band) activity, which has been associated with attentional and intentional states. Using a simple linear classifier, we obtained significantly greater classification accuracy using both types of information from the same recording epochs compared to using SCPs alone.
在一种脑机接口(BCI)中,用户通过脑电图(EEG)检测来自我调节大脑活动。为了推断用户意图,EEG信号由算法进行分类,这些算法通常只使用这些信号中几种可用信息类型中的一种。一种这样的BCI使用慢皮层电位(SCP)测量来对单个试验进行分类。我们用高频(伽马波段)活动估计对这些测量进行了补充,高频活动与注意力和意图状态有关。使用简单的线性分类器,与仅使用SCP相比,我们从相同记录时段的两种信息类型中获得了显著更高的分类准确率。