Suppr超能文献

一种使用机器学习进行特征发现的通用脑机接口(BCI)。

A Generalizable Brain-Computer Interface (BCI) Using Machine Learning for Feature Discovery.

作者信息

Nurse Ewan S, Karoly Philippa J, Grayden David B, Freestone Dean R

机构信息

NeuroEngineering Laboratory, Department of Electrical & Electronic Engineering, The University of Melbourne, Melbourne, VIC, Australia, 3010; Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC, Australia, 3010.

NeuroEngineering Laboratory, Department of Electrical & Electronic Engineering, The University of Melbourne, Melbourne, VIC, Australia, 3010; Centre for Neural Engineering, The University of Melbourne, Melbourne, VIC, Australia, 3010; Department of Medicine St. Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, VIC, Australia, 3065.

出版信息

PLoS One. 2015 Jun 26;10(6):e0131328. doi: 10.1371/journal.pone.0131328. eCollection 2015.

Abstract

This work describes a generalized method for classifying motor-related neural signals for a brain-computer interface (BCI), based on a stochastic machine learning method. The method differs from the various feature extraction and selection techniques employed in many other BCI systems. The classifier does not use extensive a-priori information, resulting in reduced reliance on highly specific domain knowledge. Instead of pre-defining features, the time-domain signal is input to a population of multi-layer perceptrons (MLPs) in order to perform a stochastic search for the best structure. The results showed that the average performance of the new algorithm outperformed other published methods using the Berlin BCI IV (2008) competition dataset and was comparable to the best results in the Berlin BCI II (2002-3) competition dataset. The new method was also applied to electroencephalography (EEG) data recorded from five subjects undertaking a hand squeeze task and demonstrated high levels of accuracy with a mean classification accuracy of 78.9% after five-fold cross-validation. Our new approach has been shown to give accurate results across different motor tasks and signal types as well as between subjects.

摘要

这项工作描述了一种基于随机机器学习方法的、用于脑机接口(BCI)对运动相关神经信号进行分类的通用方法。该方法不同于许多其他BCI系统中采用的各种特征提取和选择技术。该分类器不使用大量的先验信息,从而减少了对高度特定领域知识的依赖。该方法不是预先定义特征,而是将时域信号输入到多层感知器(MLP)群体中,以便对最佳结构进行随机搜索。结果表明,新算法的平均性能优于使用柏林BCI IV(2008)竞赛数据集的其他已发表方法,并且与柏林BCI II(2002 - 2003)竞赛数据集中的最佳结果相当。该新方法还应用于对五名进行手部挤压任务的受试者记录的脑电图(EEG)数据,在五折交叉验证后,平均分类准确率达到78.9%,显示出较高的准确性。我们的新方法已被证明在不同的运动任务、信号类型以及不同受试者之间都能给出准确的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3826/4482677/4d86baff3b94/pone.0131328.g001.jpg

相似文献

1
A Generalizable Brain-Computer Interface (BCI) Using Machine Learning for Feature Discovery.
PLoS One. 2015 Jun 26;10(6):e0131328. doi: 10.1371/journal.pone.0131328. eCollection 2015.
2
A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
Comput Methods Programs Biomed. 2017 Jul;146:47-57. doi: 10.1016/j.cmpb.2017.05.009. Epub 2017 May 24.
5
EEG Signal Classification Using Convolutional Neural Networks on Combined Spatial and Temporal Dimensions for BCI Systems.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:434-437. doi: 10.1109/EMBC44109.2020.9175894.
7
A fresh look at functional link neural network for motor imagery-based brain-computer interface.
J Neurosci Methods. 2018 Jul 15;305:28-35. doi: 10.1016/j.jneumeth.2018.05.001. Epub 2018 May 4.
8
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification.
Comput Intell Neurosci. 2018 Oct 28;2018:9593682. doi: 10.1155/2018/9593682. eCollection 2018.
9
A separated feature learning based DBN structure for classification of SSMVEP signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:3356-3359. doi: 10.1109/EMBC.2017.8037575.
10
Motor Imagery EEG Classification Using Capsule Networks.
Sensors (Basel). 2019 Jun 27;19(13):2854. doi: 10.3390/s19132854.

引用本文的文献

3
Atlas-Based Classification Algorithms for Identification of Informative Brain Regions in fMRI Data.
Neuroinformatics. 2020 Apr;18(2):219-236. doi: 10.1007/s12021-019-09435-w.
4
A New Frontier: The Convergence of Nanotechnology, Brain Machine Interfaces, and Artificial Intelligence.
Front Neurosci. 2018 Nov 16;12:843. doi: 10.3389/fnins.2018.00843. eCollection 2018.
5
Data-Driven Transducer Design and Identification for Internally-Paced Motor Brain Computer Interfaces: A Review.
Front Neurosci. 2018 Aug 15;12:540. doi: 10.3389/fnins.2018.00540. eCollection 2018.

本文引用的文献

1
Modeling Physiological Data with Deep Belief Networks.
Int J Inf Educ Technol. 2013;3(5):505-511. doi: 10.7763/IJIET.2013.V3.326.
2
What limits the performance of current invasive brain machine interfaces?
Front Syst Neurosci. 2014 Apr 29;8:68. doi: 10.3389/fnsys.2014.00068. eCollection 2014.
3
An analysis of performance evaluation for motor-imagery based BCI.
J Neural Eng. 2013 Jun;10(3):031001. doi: 10.1088/1741-2560/10/3/031001. Epub 2013 May 3.
5
Review of the BCI Competition IV.
Front Neurosci. 2012 Jul 13;6:55. doi: 10.3389/fnins.2012.00055. eCollection 2012.
6
Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
Artif Intell Med. 2012 Jun;55(2):117-26. doi: 10.1016/j.artmed.2012.02.001. Epub 2012 Apr 12.
7
Brain computer interfaces, a review.
Sensors (Basel). 2012;12(2):1211-79. doi: 10.3390/s120201211. Epub 2012 Jan 31.
8
EEG phase patterns reflect the selectivity of neural firing.
Cereb Cortex. 2013 Feb;23(2):389-98. doi: 10.1093/cercor/bhs031. Epub 2012 Feb 17.
9
Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement.
J Neural Eng. 2011 Jun;8(3):036015. doi: 10.1088/1741-2560/8/3/036015. Epub 2011 Apr 28.
10
Critical issues in state-of-the-art brain-computer interface signal processing.
J Neural Eng. 2011 Apr;8(2):025002. doi: 10.1088/1741-2560/8/2/025002. Epub 2011 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验