Carp Stefan A, Prahl Scott A, Venugopalan Vasan
Department of Chemical Engineering and Materials Science, University of California-Irvine, Irvine, CA 92697, USA.
J Biomed Opt. 2004 May-Jun;9(3):632-47. doi: 10.1117/1.1695412.
Using the delta-P(1) approximation to the Boltzmann transport equation we develop analytic solutions for the fluence rate produced by planar (1-D) and Gaussian beam (2-D) irradiation of a homogeneous, turbid, semi-infinite medium. To assess the performance of these solutions we compare the predictions for the fluence rate and two metrics of the optical penetration depth with Monte Carlo simulations. We provide results under both refractive-index matched and mismatched conditions for optical properties where the ratio of reduced scattering to absorption lies in the range 0< or =(micro(s')/micro(a))< or =10(4). For planar irradiation, the delta-P(1) approximation provides fluence rate profiles accurate to +/-16% for depths up to six transport mean free paths (l*) over the full range of optical properties. Metrics for optical penetration depth are predicted with an accuracy of +/-4%. For Gaussian irradiation using beam radii r(0) > or =3 l*, the accuracy of the fluence rate predictions is no worse than in the planar irradiation case. For smaller beam radii, the predictions degrade significantly. Specifically for media with (micro(s')/micro(a))=1 irradiated with a beam radius of r(0)=l*, the error in the fluence rate approaches 100%. Nevertheless, the accuracy of the optical penetration depth predictions remains excellent for Gaussian beam irradiation, and degrades to only +/-20% for r(0)=l*. These results show that for a given set of optical properties (micro(s')/micro(a)), the optical penetration depth decreases with a reduction in the beam diameter. Graphs are provided to indicate the optical and geometrical conditions under which one must replace the delta-P(1) results for planar irradiation with those for Gaussian beam irradiation to maintain accurate dosimetry predictions.
利用玻尔兹曼输运方程的δ - P(1)近似,我们推导出了均匀、浑浊、半无限介质在平面(一维)和高斯光束(二维)照射下产生的注量率的解析解。为了评估这些解的性能,我们将注量率的预测值以及光学穿透深度的两个指标与蒙特卡罗模拟结果进行了比较。我们给出了在折射率匹配和不匹配条件下,约化散射与吸收之比在0≤(μs'/μa)≤10⁴范围内的光学性质的结果。对于平面照射,在整个光学性质范围内,δ - P(1)近似在深度达六个输运平均自由程(l*)时,提供的注量率分布精度可达±16%。光学穿透深度指标的预测精度为±4%。对于高斯光束照射,当束半径r(0)≥3l时,注量率预测的精度不低于平面照射情况。对于较小的束半径,预测结果显著退化。具体而言,对于(μs'/μa)=1的介质,当束半径r(0)=l照射时,注量率误差接近100%。然而,对于高斯光束照射,光学穿透深度预测的精度仍然很高,当r(0)=l*时,精度仅降至±20%。这些结果表明,对于给定的一组光学性质(μs'/μa),光学穿透深度随光束直径减小而减小。提供了图表以表明在哪些光学和几何条件下,必须用高斯光束照射的结果替换平面照射的δ - P(1)结果,以维持准确的剂量学预测。