Suppr超能文献

推力驱动盘基网柄菌中微管阵列的彗星样运动。

Pushing forces drive the comet-like motility of microtubule arrays in Dictyostelium.

作者信息

Brito Daniela A, Strauss Joshua, Magidson Valentin, Tikhonenko Irina, Khodjakov Alexey, Koonce Michael P

机构信息

Division of Molecular Medicine, Wadsworth Center, Albany, NY 12201, USA.

出版信息

Mol Biol Cell. 2005 Jul;16(7):3334-40. doi: 10.1091/mbc.e05-01-0057. Epub 2005 Apr 27.

Abstract

Overexpression of dynein fragments in Dictyostelium induces the movement of the entire interphase microtubule array. Centrosomes in these cells circulate through the cytoplasm at rates between 0.4 and 2.5 microm/s and are trailed by a comet-tail like arrangement of the microtubule array. Previous work suggested that these cells use a dynein-mediated pulling mechanism to generate this dramatic movement and that similar forces are at work to maintain the interphase MTOC position in wild-type cells. In the present study, we address the nature of the forces used to produce microtubule movement. We have used a laser microbeam to sever the connection between the motile centrosomes and trailing microtubules, demonstrating that the major force for such motility results from a pushing on the microtubules. We eliminate the possibility that microtubule assembly/disassembly reactions are significant contributors to this motility and suggest that the cell cortex figures prominently in locating force-producing molecules. Our findings indicate that interphase microtubules in Dictyostelium are subject to both dynein- and kinesin-like forces and that these act in concert to maintain centrosome position in the cell and to support the radial character of the microtubule network.

摘要

在盘基网柄菌中过表达动力蛋白片段会诱导整个间期微管阵列移动。这些细胞中的中心体以0.4至2.5微米/秒的速度在细胞质中循环,并被微管阵列的彗星尾状排列所跟随。先前的研究表明,这些细胞利用动力蛋白介导的拉动机制产生这种剧烈运动,并且类似的力量在维持野生型细胞中间期微管组织中心(MTOC)的位置中起作用。在本研究中,我们探讨了产生微管运动的力的性质。我们使用激光微束切断运动的中心体与尾随微管之间的连接,证明这种运动的主要力量来自对微管的推动。我们排除了微管组装/拆卸反应是这种运动的重要贡献因素的可能性,并表明细胞皮层在定位产生力的分子方面起着重要作用。我们的研究结果表明,盘基网柄菌中间期微管受到类似动力蛋白和驱动蛋白的力量作用,并且这些力量共同作用以维持细胞中的中心体位置并支持微管网络的放射状特征。

相似文献

1
Pushing forces drive the comet-like motility of microtubule arrays in Dictyostelium.
Mol Biol Cell. 2005 Jul;16(7):3334-40. doi: 10.1091/mbc.e05-01-0057. Epub 2005 Apr 27.
4
Finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: a computational study.
Mol Biol Cell. 2010 Dec;21(24):4418-27. doi: 10.1091/mbc.E10-07-0627. Epub 2010 Oct 27.
5
Organization of microtubule assemblies in Dictyostelium syncytia depends on the microtubule crosslinker, Ase1.
Cell Mol Life Sci. 2016 Feb;73(4):859-68. doi: 10.1007/s00018-015-2026-8. Epub 2015 Aug 23.
6
Force balances between interphase centrosomes as revealed by laser ablation.
Mol Biol Cell. 2019 Jul 1;30(14):1705-1715. doi: 10.1091/mbc.E19-01-0034. Epub 2019 May 8.
8
End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers.
Cell Cycle. 2012 Oct 15;11(20):3750-7. doi: 10.4161/cc.21753. Epub 2012 Aug 16.
9
Analysis of Dictyostelium TACC reveals differential interactions with CP224 and unusual dynamics of Dictyostelium microtubules.
Cell Mol Life Sci. 2011 Jan;68(2):275-87. doi: 10.1007/s00018-010-0453-0. Epub 2010 Jul 24.
10
Protein 4.1R regulates interphase microtubule organization at the centrosome.
J Cell Sci. 2004 Dec 1;117(Pt 25):6197-206. doi: 10.1242/jcs.01544.

引用本文的文献

1
Actin network architecture can ensure robust centering or sensitive decentering of the centrosome.
EMBO J. 2022 Oct 17;41(20):e111631. doi: 10.15252/embj.2022111631. Epub 2022 Aug 2.
2
Microtubule-dependent pushing forces contribute to long-distance aster movement and centration in egg extracts.
Mol Biol Cell. 2020 Dec 1;31(25):2791-2802. doi: 10.1091/mbc.E20-01-0088. Epub 2020 Oct 7.
3
Centering and Shifting of Centrosomes in Cells.
Cells. 2020 May 29;9(6):1351. doi: 10.3390/cells9061351.
5
Bioenergetics of the Kinesin-8 Motor Isoform.
Biomolecules. 2020 Apr 7;10(4):563. doi: 10.3390/biom10040563.
6
13 Plus 1: A 30-Year Perspective on Microtubule-Based Motility in .
Cells. 2020 Feb 25;9(3):528. doi: 10.3390/cells9030528.
7
Force balances between interphase centrosomes as revealed by laser ablation.
Mol Biol Cell. 2019 Jul 1;30(14):1705-1715. doi: 10.1091/mbc.E19-01-0034. Epub 2019 May 8.
8
Centrosome Positioning in Dictyostelium: Moving beyond Microtubule Tip Dynamics.
Cells. 2018 Apr 12;7(4):29. doi: 10.3390/cells7040029.
9
Centrosome centering and decentering by microtubule network rearrangement.
Mol Biol Cell. 2016 Sep 15;27(18):2833-43. doi: 10.1091/mbc.E16-06-0395. Epub 2016 Jul 20.
10
Diagnostic Estimation of Noninvasive Tests for Hepatic Fibrosis in Chronic Hepatitis B Patients Without a Gold Standard.
Hepat Mon. 2016 Feb 16;16(2):e31983. doi: 10.5812/hepatmon.31983. eCollection 2016 Feb.

本文引用的文献

3
A microtubule-binding myosin required for nuclear anchoring and spindle assembly.
Nature. 2004 Sep 16;431(7006):325-9. doi: 10.1038/nature02834.
4
Laser microsurgery in fission yeast; role of the mitotic spindle midzone in anaphase B.
Curr Biol. 2004 Aug 10;14(15):1330-40. doi: 10.1016/j.cub.2004.07.028.
5
Complementary roles for dynein and kinesins in the Xenopus egg cortical rotation.
Dev Biol. 2004 Jul 1;271(1):38-48. doi: 10.1016/j.ydbio.2004.03.018.
6
The XMAP215-family protein DdCP224 is required for cortical interactions of microtubules.
BMC Cell Biol. 2004 Jun 8;5:24. doi: 10.1186/1471-2121-5-24.
7
Nudel functions in membrane traffic mainly through association with Lis1 and cytoplasmic dynein.
J Cell Biol. 2004 Feb 16;164(4):557-66. doi: 10.1083/jcb.200308058.
8
A role for cytoplasmic dynein and LIS1 in directed cell movement.
J Cell Biol. 2003 Dec 22;163(6):1205-11. doi: 10.1083/jcb.200310097.
9
A novel actin-bundling kinesin-related protein from Dictyostelium discoideum.
J Biol Chem. 2004 Feb 6;279(6):4696-704. doi: 10.1074/jbc.M308022200. Epub 2003 Nov 17.
10
Centrosome positioning in interphase cells.
J Cell Biol. 2003 Sep 15;162(6):963-9. doi: 10.1083/jcb.200305082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验