Akhter M P, Wells D J, Short S J, Cullen D M, Johnson M L, Haynatzki G R, Babij P, Allen K M, Yaworsky P J, Bex F, Recker R R
Osteoporosis Research Center, Creighton University, Omaha, NE 68131, USA.
Bone. 2004 Jul;35(1):162-9. doi: 10.1016/j.bone.2004.02.018.
The mutation responsible for the high bone mass (HBM) phenotype has been postulated to act through the adaptive response of bone to mechanical load resulting in denser and stronger skeletons in humans and animals. The bone phenotype of members of a HBM family is characterized by normally shaped bones that are exceptionally dense, particularly at load bearing sites [Cancer Res. 59 (1999) 1572]. The high bone mass (HBM) mutation was identified as a glycine to valine substitution at amino acid residue 171 in the gene coding for low-density lipoprotein receptor-related protein 5 (LRP5) [Bone Miner. Res. 16(4) (2001) 758]. Thus, efforts have focused on the examination of the role of LRP5 and the G171V mutation in bone mechanotransduction responses [J. Bone Miner. Res 18 (2002) 960]. Transgenic mice expressing the human G171V mutation have been shown to have skeletal phenotypes remarkably similar to those seen in affected individuals. In this study, we have identified differences in biomechanical (structural and apparent material) properties, bone mass/ash, and bone stiffness of cortical and cancellous bone driven by the G171V mutation in LRP5. As in humans, the LRP5 G171V plays an important role in regulating bone structural phenotypes in mice. These bone phenotypes include greater structural and apparent material properties in HBM HET as compared to non-transgenic littermates (NTG) mice. Body size and weight in HBM HET were similar to that in NTG control mice. However, the LRP5 G171V mutation in HET mice results in a skeleton that has greater structural (femoral shaft, femoral neck, tibiae, vertebral body) and apparent material (vertebral body) strength, percent bone ash weight (ulnae), and tibial stiffness. Despite similar body weight to NTG mice, the denser and stiffer bones in G171V mice may represent greater bone formation sensitivity to normal mechanical stimuli resulting in an overadaptation of skeleton to weight-related forces.
导致高骨量(HBM)表型的突变被推测是通过骨骼对机械负荷的适应性反应起作用,从而在人类和动物中形成更致密、更强壮的骨骼。一个HBM家族成员的骨骼表型特征是骨骼形状正常,但密度异常高,尤其是在承重部位[《癌症研究》59(1999)1572]。高骨量(HBM)突变被确定为低密度脂蛋白受体相关蛋白5(LRP5)编码基因中第171位氨基酸残基处的甘氨酸被缬氨酸取代[《骨矿物质研究》16(4)(2001)758]。因此,研究工作集中在研究LRP5和G171V突变在骨机械转导反应中的作用[《骨矿物质研究杂志》18(2002)960]。已证明表达人类G171V突变的转基因小鼠具有与受影响个体显著相似的骨骼表型。在本研究中,我们确定了由LRP5中的G171V突变驱动的皮质骨和松质骨在生物力学(结构和表观材料)特性、骨量/灰分以及骨硬度方面的差异。与人类一样,LRP5 G171V在调节小鼠骨骼结构表型中起重要作用。这些骨骼表型包括与非转基因同窝小鼠(NTG)相比,HBM HET小鼠具有更大的结构和表观材料特性。HBM HET小鼠的体型和体重与NTG对照小鼠相似。然而,HET小鼠中的LRP5 G171V突变导致骨骼具有更大结构(股骨干、股骨颈、胫骨、椎体)和表观材料(椎体)强度、骨灰重量百分比(尺骨)以及胫骨硬度。尽管与NTG小鼠体重相似,但G171V小鼠中更致密、更坚硬的骨骼可能代表对正常机械刺激的更大骨形成敏感性,导致骨骼对体重相关力过度适应。