使用自我报告数据评估个体死亡风险:人工神经网络与衰弱指数的比较

Assessment of individual risk of death using self-report data: an artificial neural network compared with a frailty index.

作者信息

Song Xiaowei, Mitnitski Arnold, MacKnight Chris, Rockwood Kenneth

机构信息

Geriatric Medicine Research Unit, Queen Elizabeth II Health Sciences Center, Halifax, Nova Scotia, Canada.

出版信息

J Am Geriatr Soc. 2004 Jul;52(7):1180-4. doi: 10.1111/j.1532-5415.2004.52319.x.

Abstract

OBJECTIVES

To evaluate the potential of an artificial neural network (ANN) in predicting survival in elderly Canadians, using self-report data.

DESIGN

Cohort study with up to 72 months follow-up.

SETTING

Forty self-reported characteristics were obtained from the community sample of the Canadian Study of Health and Aging. An individual frailty index score was calculated as the proportion of deficits experienced. For the ANN, randomly selected participants formed the training sample to derive relationships between the variables and survival and the validation sample to control overfitting. An ANN output was generated for each subject. A separate testing sample was used to evaluate the accuracy of prediction.

PARTICIPANTS

A total of 8,547 Canadians aged 65 to 99, of whom 1,865 died during 72 months of follow-up.

MEASUREMENTS

The output of an ANN model was compared with an unweighted frailty index in predicting survival patterns using receiver operating characteristic (ROC) curves.

RESULTS

The area under the ROC curve was 86% for the ANN and 62% for the frailty index. At the optimal ROC value, the accuracy of the frailty index was 70.0%. The ANN accuracy rate over 10 simulations in predicting the probability of individual survival mean+/-standard deviation was 79.2+/-0.8%.

CONCLUSION

An ANN provided more accurate survival classification than an unweighted frailty index. The data suggest that the concept of biological redundancy might be operationalized from health survey data.

摘要

目的

利用自我报告数据评估人工神经网络(ANN)预测加拿大老年人存活率的潜力。

设计

随访长达72个月的队列研究。

背景

从加拿大健康与老龄化研究的社区样本中获取40项自我报告特征。计算个体衰弱指数得分,即所经历缺陷的比例。对于人工神经网络,随机选择参与者组成训练样本以推导变量与存活率之间的关系,并组成验证样本以控制过度拟合。为每个受试者生成人工神经网络输出。使用单独的测试样本评估预测准确性。

参与者

总共8547名年龄在65至99岁之间的加拿大人,其中1865人在72个月的随访期间死亡。

测量

使用受试者工作特征(ROC)曲线比较人工神经网络模型输出与未加权衰弱指数在预测生存模式方面的情况。

结果

人工神经网络的ROC曲线下面积为86%,衰弱指数为62%。在最佳ROC值时,衰弱指数的准确性为70.0%。人工神经网络在10次模拟中预测个体生存概率均值±标准差的准确率为79.2±0.8%。

结论

人工神经网络在生存分类方面比未加权衰弱指数更准确。数据表明,生物冗余的概念可能可以从健康调查数据中实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索