Suppr超能文献

使用视野数据训练的用于青光眼诊断的人工神经网络:与传统算法的比较。

Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms.

作者信息

Bizios Dimitrios, Heijl Anders, Bengtsson Boel

机构信息

Department of Clinical Sciences, Ophthalmology, Malmö University Hospital, Lund University, SE-205 02 Malmö, Sweden.

出版信息

J Glaucoma. 2007 Jan;16(1):20-8. doi: 10.1097/IJG.0b013e31802b34e4.

Abstract

PURPOSE

To evaluate and confirm the performance of an artificial neural network (ANN) trained to recognize glaucomatous visual field defects, and compare its diagnostic accuracy with that of other algorithms proposed for the detection of visual field loss.

METHODS

SITA Standard 30-2 visual fields, from 100 glaucoma patients and 116 healthy participants, formed the data set. Our ANN was a previously described fully trained network using scored pattern deviation probability maps as input data. Its diagnostic accuracy was compared to that of the Glaucoma Hemifield Test, the Pattern Standard Deviation index at the P<5% and <1%, and also to a technique based on the recognizing clusters of significantly depressed test points.

RESULTS

The included tests had early to moderate visual field loss (median MD=-6.16 dB). ANN achieved a sensitivity of 93% at a specificity level of 94% with an area under the receiver operating characteristic curve of 0.984. Glaucoma Hemifield Test attained a sensitivity of 92% at 91% specificity. Pattern Standard Deviation, with a cut off level at P<5% had a sensitivity of 89% with a specificity of 93%, whereas at P<1% the sensitivity and specificity was 72% and 97%, respectively. The cluster algorithm yielded a sensitivity of 95% and a specificity of 82%.

CONCLUSIONS

The high diagnostic performance of our ANN based on refined input visual field data was confirmed in this independent sample. Its diagnostic accuracy was slightly to considerably better than that of the compared algorithms. The results indicate the large potential for ANN as an important clinical glaucoma diagnostic tool.

摘要

目的

评估并确认经训练用于识别青光眼性视野缺损的人工神经网络(ANN)的性能,并将其诊断准确性与其他用于检测视野缺损的算法进行比较。

方法

来自100例青光眼患者和116名健康参与者的SITA标准30-2视野检查结果构成数据集。我们的人工神经网络是一个先前描述的经过充分训练的网络,使用评分模式偏差概率图作为输入数据。将其诊断准确性与青光眼半视野检测、P<5%和<1%时的模式标准偏差指数进行比较,还与基于识别明显压低测试点簇的技术进行比较。

结果

纳入的测试有早期至中度视野缺损(中位平均偏差=-6.16 dB)。人工神经网络在特异性水平为94%时灵敏度达到93%,受试者工作特征曲线下面积为0.984。青光眼半视野检测在特异性为91%时灵敏度达到92%。模式标准偏差在P<5%的截断水平时灵敏度为89%,特异性为93%,而在P<1%时灵敏度和特异性分别为72%和97%。聚类算法的灵敏度为95%,特异性为82%。

结论

在这个独立样本中证实了我们基于精细输入视野数据的人工神经网络具有较高的诊断性能。其诊断准确性略优于或显著优于所比较的算法。结果表明人工神经网络作为一种重要的临床青光眼诊断工具具有很大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验