Chambers Jeffrey Q, Silver Whendee L
Earth System Science, University of California, Irvine, CA 92697, USA.
Philos Trans R Soc Lond B Biol Sci. 2004 Mar 29;359(1443):463-76. doi: 10.1098/rstb.2003.1424.
Atmospheric changes that may affect physiological and biogeochemical processes in old-growth tropical forests include: (i) rising atmospheric CO2 concentration; (ii) an increase in land surface temperature; (iii) changes in precipitation and ecosystem moisture status; and (iv) altered disturbance regimes. Elevated CO2 is likely to directly influence numerous leaf-level physiological processes, but whether these changes are ultimately reflected in altered ecosystem carbon storage is unclear. The net primary productivity (NPP) response of old-growth tropical forests to elevated CO2 is unknown, but unlikely to exceed the maximum experimentally measured 25% increase in NPP with a doubling of atmospheric CO2 from pre-industrial levels. In addition, evolutionary constraints exhibited by tropical plants adapted to low CO2 levels during most of the Late Pleistocene, may result in little response to increased carbon availability. To set a maximum potential response for a Central Amazon forest, using an individual-tree-based carbon cycling model, a modelling experiment was performed constituting a 25% increase in tree growth rate, linked to the known and expected increase in atmospheric CO2. Results demonstrated a maximum carbon sequestration rate of ca. 0.2 Mg C per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), and a sequestration rate of only 0.05 Mg C ha(-1) yr(-1) for an interval centred on calendar years 1980-2020. This low rate results from slow growing trees and the long residence time of carbon in woody tissues. By contrast, changes in disturbance frequency, precipitation patterns and other environmental factors can cause marked and relatively rapid shifts in ecosystem carbon storage. It is our view that observed changes in tropical forest inventory plots over the past few decades is more probably being driven by changes in disturbance or other environmental factors, than by a response to elevated CO2. Whether these observed changes in tropical forests are the beginning of long-term permanent shifts or a transient response is uncertain and remains an important research priority.
(i)大气二氧化碳浓度上升;(ii)陆地表面温度升高;(iii)降水和生态系统水分状况变化;以及(iv)干扰格局改变。二氧化碳浓度升高可能直接影响众多叶片水平的生理过程,但这些变化最终是否会反映在生态系统碳储量的改变上尚不清楚。老龄热带森林对二氧化碳浓度升高的净初级生产力(NPP)响应未知,但不太可能超过工业化前水平大气二氧化碳浓度翻倍时实验测得的NPP最大增幅25%。此外,在晚更新世大部分时间里适应低二氧化碳水平的热带植物所表现出的进化限制,可能导致对碳可利用性增加的反应很小。为了设定亚马逊中部森林的最大潜在响应,使用基于单棵树的碳循环模型进行了一项模拟实验,该实验设定树木生长速率增加25%,这与已知的和预期的大气二氧化碳增加相关。结果表明,最大碳固存率约为每年每公顷0.2 公吨碳(ha⁻¹ yr⁻¹,其中1公顷 = 10⁴ 平方米),而在以1980 - 2020年历年为中心的时间段内,固存率仅为每年每公顷0.05公吨碳。这种低速率是由生长缓慢的树木以及碳在木质组织中的长停留时间导致的。相比之下,干扰频率、降水模式和其他环境因素的变化可导致生态系统碳储量发生显著且相对快速的变化。我们认为,过去几十年在热带森林清查地块中观察到的变化更可能是由干扰或其他环境因素的变化驱动的,而不是对二氧化碳浓度升高的响应。热带森林中这些观察到的变化是长期永久性转变的开始还是短暂响应尚不确定,仍是一个重要的研究重点。