Suppr超能文献

地下与地上植物源脱落酸(ABA)在热带森林对变暖响应的核心。

Below versus above Ground Plant Sources of Abscisic Acid (ABA) at the Heart of Tropical Forest Response to Warming.

机构信息

National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.

Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Building 64-241, Berkeley, CA 94720, USA.

出版信息

Int J Mol Sci. 2018 Jul 12;19(7):2023. doi: 10.3390/ijms19072023.

Abstract

Warming surface temperatures and increasing frequency and duration of widespread droughts threaten the health of natural forests and agricultural crops. High temperatures (HT) and intense droughts can lead to the excessive plant water loss and the accumulation of reactive oxygen species (ROS) resulting in extensive physical and oxidative damage to sensitive plant components including photosynthetic membranes. ROS signaling is tightly integrated with signaling mechanisms of the potent phytohormone abscisic acid (ABA), which stimulates stomatal closure leading to a reduction in transpiration and net photosynthesis, alters hydraulic conductivities, and activates defense gene expression including antioxidant systems. While generally assumed to be produced in roots and transported to shoots following drought stress, recent evidence suggests that a large fraction of plant ABA is produced in leaves via the isoprenoid pathway. Thus, through stomatal regulation and stress signaling which alters water and carbon fluxes, we highlight the fact that ABA lies at the heart of the Carbon-Water-ROS Nexus of plant response to HT and drought stress. We discuss the current state of knowledge of ABA biosynthesis, transport, and degradation and the role of ABA and other isoprenoids in the oxidative stress response. We discuss potential variations in ABA production and stomatal sensitivity among different plant functional types including isohydric/anisohydric and pioneer/climax tree species. We describe experiments that would demonstrate the possibility of a direct energetic and carbon link between leaf ABA biosynthesis and photosynthesis, and discuss the potential for a positive feedback between leaf warming and enhanced ABA production together with reduced stomatal conductance and transpiration. Finally, we propose a new modeling framework to capture these interactions. We conclude by discussing the importance of ABA in diverse tropical ecosystems through increases in the thermotolerance of photosynthesis to drought and heat stress, and the global importance of these mechanisms to carbon and water cycling under climate change scenarios.

摘要

变暖的地表温度和日益频繁及持久的大范围干旱威胁着天然林和农作物的健康。高温(HT)和剧烈干旱会导致植物过度失水和活性氧(ROS)的积累,从而对包括光合膜在内的植物敏感部位造成广泛的物理和氧化损伤。ROS 信号与强效植物激素脱落酸(ABA)的信号机制紧密结合,ABA 能刺激气孔关闭,从而减少蒸腾和净光合作用,改变水力传导率,并激活防御基因表达,包括抗氧化系统。虽然通常认为 ABA 是在根部产生并在干旱胁迫后被运输到地上部分,但最近的证据表明,植物 ABA 的很大一部分是通过异戊二烯途径在叶片中产生的。因此,通过改变水和碳通量的气孔调节和胁迫信号,我们强调了这样一个事实,即 ABA 是植物对 HT 和干旱胁迫响应的碳-水-ROS 关联的核心。我们讨论了 ABA 生物合成、运输和降解的当前知识状态,以及 ABA 和其他异戊二烯在氧化应激反应中的作用。我们讨论了不同植物功能类型(包括等水/不等水和先锋/顶极树种)中 ABA 产生和气孔敏感性的潜在变化。我们描述了一些实验,这些实验将证明叶片 ABA 生物合成和光合作用之间存在直接的能量和碳联系的可能性,并讨论了叶片变暖与增强 ABA 产生以及减少气孔导度和蒸腾之间可能存在正反馈的问题。最后,我们提出了一个新的建模框架来捕捉这些相互作用。我们最后讨论了 ABA 在不同热带生态系统中的重要性,包括提高光合作用对干旱和热胁迫的耐热性,以及这些机制在气候变化情景下对碳和水循环的全球重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c44d/6073271/16b2b6afc672/ijms-19-02023-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验