Suppr超能文献

Endothelial dysfunction in aortic rings and mesenteric beds isolated from deoxycorticosterone acetate hypertensive rats: possible involvement of protein kinase C.

作者信息

Fatehi-Hassanabad Zahra, Fatehi Mohammad, Shahidi Mohsen Imen

机构信息

Department of Physiology and Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, P.O. Box 91775 1843, Meshed, Iran.

出版信息

Eur J Pharmacol. 2004 Jun 28;494(2-3):199-204. doi: 10.1016/j.ejphar.2004.05.012.

Abstract

The main objectives of this study were to investigate the effects of deoxycorticosterone acetate (DOCA)-induced hypertension on the aortic and mesenteric vascular responses to vasodilator and vasoconstrictor agents and also to elucidate whether protein kinase C (PKC) was involved in these responses, by using chelerythrine and calphostin C, the inhibitors of protein kinase C. Hypertension was induced in male Sprague-Dawley rats (200-250 g) by DOCA-salt injection [20 mg/kg, twice weekly for 5 weeks, subcutaneously (s.c.)] and NaCl (1%) was added to their drinking water. Control rats received a saline injection (0.5 ml/kg, twice weekly for 5 weeks, s.c.), then the animals were anaesthetised [thiopental, 30 mg/kg, intraperitoneally (i.p.)] and the arterial blood pressure was measured. Mean arterial blood pressure in control and hypertensive rats were 98+/-7.5 and 163+/-3.5 mmHg, respectively (P<0.0001). In the in vitro studies, rings of descending aorta and mesenteric beds were precontracted with phenylephrine and then concentration-response curves to acetylcholine and sodium nitroprusside were constructed. In the tissue removed from hypertensive rats, the responses to acetylcholine, but not to sodium nitroprusside, were significantly reduced. However, addition of chelerythrine (10 microM) or calphostin C (100 nM) to the organ bath significantly restored these impaired responses. Our data suggest that protein kinase C plays a crucial role in the endothelial dysfunction induced by hypertension.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验