Silvestri Lynn S, Taraporewala Zenobia F, Patton John T
Laboratory of Infectious Diseases, Nationa Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-8026, USA.
J Virol. 2004 Jul;78(14):7763-74. doi: 10.1128/JVI.78.14.7763-7774.2004.
Rotavirus plus-strand RNAs not only direct protein synthesis but also serve as templates for the synthesis of the segmented double-stranded RNA (dsRNA) genome. In this study, we identified short-interfering RNAs (siRNAs) for viral genes 5, 8, and 9 that suppressed the expression of NSP1, a nonessential protein; NSP2, a component of viral replication factories (viroplasms); and VP7, an outer capsid protein, respectively. The loss of NSP2 expression inhibited viroplasm formation, genome replication, virion assembly, and synthesis of the other viral proteins. In contrast, the loss of VP7 expression had no effect on genome replication; instead, it inhibited only outer-capsid morphogenesis. Similarly, neither genome replication nor any other event of the viral life cycle was affected by the loss of NSP1. The data indicate that plus-strand RNAs templating dsRNA synthesis within viroplasms are not susceptible to siRNA-induced RNase degradation. In contrast, plus-strand RNAs templating protein synthesis in the cytosol are susceptible to degradation and thus are not the likely source of plus-strand RNAs for dsRNA synthesis in viroplasms. Indeed, immunofluorescence analysis of bromouridine (BrU)-labeled RNA made in infected cells provided evidence that plus-strand RNAs are synthesized within viroplasms. Furthermore, transfection of BrU-labeled viral plus-strand RNA into infected cells suggested that plus-strand RNAs introduced into the cytosol do not localize to viroplasms. From these results, we propose that plus-strand RNAs synthesized within viroplasms are the primary source of templates for genome replication and that trafficking pathways do not exist within the cytosol that transport plus-strand RNAs to viroplasms. The lack of such pathways confounds the development of reverse genetics systems for rotavirus.
轮状病毒正链RNA不仅指导蛋白质合成,还作为分段双链RNA(dsRNA)基因组合成的模板。在本研究中,我们鉴定了针对病毒基因5、8和9的短干扰RNA(siRNA),它们分别抑制了非必需蛋白NSP1、病毒复制工厂(病毒质)的组成成分NSP2以及外衣壳蛋白VP7的表达。NSP2表达缺失抑制了病毒质形成、基因组复制、病毒粒子组装以及其他病毒蛋白的合成。相比之下,VP7表达缺失对基因组复制没有影响;相反,它仅抑制外衣壳形态发生。同样,NSP1缺失对病毒生命周期的基因组复制或任何其他事件均无影响。数据表明,在病毒质内作为dsRNA合成模板的正链RNA不易受到siRNA诱导的核糖核酸酶降解。相比之下,在细胞质中作为蛋白质合成模板的正链RNA易受降解,因此不太可能是病毒质中dsRNA合成的正链RNA来源。事实上,对感染细胞中溴尿苷(BrU)标记的RNA进行免疫荧光分析提供了证据,表明正链RNA是在病毒质内合成的。此外,将BrU标记的病毒正链RNA转染到感染细胞中表明,引入细胞质中的正链RNA不会定位于病毒质。基于这些结果,我们提出在病毒质内合成的正链RNA是基因组复制模板的主要来源,并且细胞质中不存在将正链RNA转运到病毒质的运输途径。缺乏此类途径阻碍了轮状病毒反向遗传学系统的发展。