Suppr超能文献

蘑菇体室中不平衡联想学习的线性判别分析模型。

A linear discriminant analysis model of imbalanced associative learning in the mushroom body compartment.

机构信息

Center for Computational Neuroscience, Flatiron Institute, New York, New York, United States of America.

Neuroscience Institute, New York University School of Medicine, New York, New York, United States of America.

出版信息

PLoS Comput Biol. 2023 Feb 6;19(2):e1010864. doi: 10.1371/journal.pcbi.1010864. eCollection 2023 Feb.

Abstract

To adapt to their environments, animals learn associations between sensory stimuli and unconditioned stimuli. In invertebrates, olfactory associative learning primarily occurs in the mushroom body, which is segregated into separate compartments. Within each compartment, Kenyon cells (KCs) encoding sparse odor representations project onto mushroom body output neurons (MBONs) whose outputs guide behavior. Associated with each compartment is a dopamine neuron (DAN) that modulates plasticity of the KC-MBON synapses within the compartment. Interestingly, DAN-induced plasticity of the KC-MBON synapse is imbalanced in the sense that it only weakens the synapse and is temporally sparse. We propose a normative mechanistic model of the MBON as a linear discriminant analysis (LDA) classifier that predicts the presence of an unconditioned stimulus (class identity) given a KC odor representation (feature vector). Starting from a principled LDA objective function and under the assumption of temporally sparse DAN activity, we derive an online algorithm which maps onto the mushroom body compartment. Our model accounts for the imbalanced learning at the KC-MBON synapse and makes testable predictions that provide clear contrasts with existing models.

摘要

为了适应环境,动物学会了将感官刺激与非条件刺激联系起来。在无脊椎动物中,嗅觉联想学习主要发生在蘑菇体中,蘑菇体被分隔成不同的隔室。在每个隔室中,编码稀疏气味表示的肯尼恩细胞(KCs)投射到蘑菇体输出神经元(MBONs)上,MBONs 的输出指导行为。与每个隔室相关的是多巴胺神经元(DAN),它调节隔室内 KC-MBON 突触的可塑性。有趣的是,DAN 诱导的 KC-MBON 突触的可塑性是不平衡的,因为它只是削弱了突触,并且在时间上是稀疏的。我们提出了一个蘑菇体的规范性机制模型,作为一个线性判别分析(LDA)分类器,该分类器根据 KC 气味表示(特征向量)预测未条件刺激(类别身份)的存在。从有原则的 LDA 目标函数出发,并假设 DAN 活动在时间上稀疏,我们推导出一个在线算法,该算法映射到蘑菇体隔室。我们的模型解释了 KC-MBON 突触的不平衡学习,并提出了可测试的预测,这些预测与现有模型形成了清晰的对比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d61/9934445/8d442b3c50b6/pcbi.1010864.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验