Suppr超能文献

高分辨率CTCF足迹分析揭示染色质状态对黏连蛋白挤压的影响。

High-resolution CTCF footprinting reveals impact of chromatin state on cohesin extrusion.

作者信息

Sept Corriene E, Tak Y Esther, Goel Viraat, Bhakta Mital S, Cerda-Smith Christian G, Hutchinson Haley M, Blanchette Marco, Eyler Christine E, Johnstone Sarah E, Joung J Keith, Hansen Anders S, Aryee Martin J

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.

Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.

出版信息

Nat Commun. 2025 May 15;16(1):4506. doi: 10.1038/s41467-025-57775-w.

Abstract

Cohesin-mediated DNA loop extrusion enables gene regulation by distal enhancers through the establishment of chromosome structure and long-range enhancer-promoter interactions. The best characterized cohesin-related structures, such as topologically associating domains (TADs) anchored at convergent CTCF binding sites, represent static conformations. Consequently, loop extrusion dynamics remain poorly understood. To better characterize static and dynamically extruding chromatin loop structures, we use MNase-based 3D genome assays to simultaneously determine CTCF and cohesin localization as well as the 3D contacts they mediate. Here we present CTCF Analyzer (with) Multinomial Estimation (CAMEL), a tool that identifies CTCF footprints at near base-pair resolution in CTCF MNase HiChiP. We also use Region Capture Micro-C to identify a CTCF-adjacent footprint that is attributed to cohesin occupancy. We leverage this substantial advance in resolution to determine that the fully extruded (CTCF-CTCF loop) state is rare genome-wide with locus-specific variation from ~1-10%. We further investigate the impact of chromatin state on loop extrusion dynamics and find that active regulatory elements impede cohesin extrusion. These findings support a model of topological regulation whereby the transient, partially extruded state facilitates enhancer-promoter contacts that can regulate transcription.

摘要

黏连蛋白介导的DNA环挤压通过建立染色体结构和远距离增强子-启动子相互作用,实现远端增强子对基因的调控。最具特征的黏连蛋白相关结构,如锚定在收敛性CTCF结合位点的拓扑相关结构域(TADs),代表静态构象。因此,环挤压动力学仍知之甚少。为了更好地表征静态和动态挤压的染色质环结构,我们使用基于微球菌核酸酶(MNase)的3D基因组分析方法,同时确定CTCF和黏连蛋白的定位以及它们介导的3D接触。在此,我们展示了CTCF分析器(含)多项式估计(CAMEL),这是一种在CTCF MNase HiChiP中以近碱基对分辨率识别CTCF足迹的工具。我们还使用区域捕获Micro-C来识别归因于黏连蛋白占据的CTCF相邻足迹。我们利用这一分辨率上的重大进展来确定,在全基因组范围内,完全挤压(CTCF-CTCF环)状态很少见,位点特异性变异约为1%-10%。我们进一步研究染色质状态对环挤压动力学的影响,发现活跃的调控元件会阻碍黏连蛋白的挤压。这些发现支持了一种拓扑调控模型,即瞬时的、部分挤压的状态促进了可调控转录的增强子-启动子接触。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/716d/12081859/20d9515a3295/41467_2025_57775_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验