Suppr超能文献

枯草芽孢杆菌对一氧化氮和亚硝化剂硝普钠的反应。

Response of Bacillus subtilis to nitric oxide and the nitrosating agent sodium nitroprusside.

作者信息

Moore Charles M, Nakano Michiko M, Wang Tao, Ye Rick W, Helmann John D

机构信息

Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.

出版信息

J Bacteriol. 2004 Jul;186(14):4655-64. doi: 10.1128/JB.186.14.4655-4664.2004.

Abstract

We examined the effects of nitric oxide (NO) and sodium nitroprusside (SNP) on Bacillus subtilis physiology and gene expression. In aerobically growing cultures, cell death was most pronounced when NO gas was added incrementally rather than as a single bolus, suggesting that the length of exposure was important in determining cell survival. DNA microarrays, Northern hybridizations, and RNA slot blot analyses were employed to characterize the global transcriptional response of B. subtilis to NO and SNP. Under both aerobic and anaerobic conditions the gene most highly induced by NO was hmp, a flavohemoglobin known to protect bacteria from NO stress. Anaerobically, NO also induced genes repressed by the Fe(II)-containing metalloregulators, Fur and PerR, consistent with the known ability of NO to nitrosylate the Fe(II) center in Fur. In support of this model, we demonstrate that NO fails to induce PerR-regulated genes under growth conditions that favor the formation of PerR:Mn(II) rather than PerR:Fe(II). Aerobically, NO gas induced hmp, the sigmaB general stress regulon, and, to a lesser extent, the Fur and PerR regulons. Surprisingly, NO gas induced the sigmaB regulon via the energy branch of the sigmaB regulatory cascade while induction by SNP was mediated by the environmental stress branch. This emphasizes that NO and SNP elicit genetically distinct stress responses.

摘要

我们研究了一氧化氮(NO)和硝普钠(SNP)对枯草芽孢杆菌生理学和基因表达的影响。在需氧生长的培养物中,当逐渐添加NO气体而非一次性添加时,细胞死亡最为明显,这表明暴露时间在决定细胞存活方面很重要。利用DNA微阵列、Northern杂交和RNA斑点印迹分析来表征枯草芽孢杆菌对NO和SNP的全局转录反应。在有氧和无氧条件下,受NO诱导程度最高的基因是hmp,这是一种已知能保护细菌免受NO胁迫的黄素血红蛋白。在无氧条件下,NO还诱导了受含Fe(II)金属调节因子Fur和PerR抑制的基因,这与NO使Fur中的Fe(II)中心亚硝化的已知能力一致。为支持该模型,我们证明在有利于形成PerR:Mn(II)而非PerR:Fe(II)的生长条件下,NO无法诱导PerR调节的基因。在有氧条件下,NO气体诱导了hmp、σB一般应激调节子,在较小程度上还诱导了Fur和PerR调节子。令人惊讶的是,NO气体通过σB调节级联的能量分支诱导了σB调节子,而SNP的诱导则由环境应激分支介导。这强调了NO和SNP引发了基因上不同的应激反应。

相似文献

1
Response of Bacillus subtilis to nitric oxide and the nitrosating agent sodium nitroprusside.
J Bacteriol. 2004 Jul;186(14):4655-64. doi: 10.1128/JB.186.14.4655-4664.2004.
2
Mechanisms of adaptation to nitrosative stress in Bacillus subtilis.
J Bacteriol. 2007 Apr;189(8):3063-71. doi: 10.1128/JB.01782-06. Epub 2007 Feb 9.
4
The Spx paralogue MgsR (YqgZ) controls a subregulon within the general stress response of Bacillus subtilis.
Mol Microbiol. 2008 Sep;69(5):1104-20. doi: 10.1111/j.1365-2958.2008.06332.x. Epub 2008 Jul 14.
6
The nitric oxide-responsive regulator NsrR controls ResDE-dependent gene expression.
J Bacteriol. 2006 Aug;188(16):5878-87. doi: 10.1128/JB.00486-06.
7
The sigmaB regulon in Staphylococcus aureus and its regulation.
Int J Med Microbiol. 2006 Aug;296(4-5):237-58. doi: 10.1016/j.ijmm.2005.11.011. Epub 2006 Apr 27.
10
Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach.
Proteomics. 2006 Mar;6(5):1550-62. doi: 10.1002/pmic.200500197.

引用本文的文献

1
Nitric Oxide restricts iron availability and induces quorum sensing in Streptococcus pyogenes.
Redox Biol. 2025 Jun 4;85:103699. doi: 10.1016/j.redox.2025.103699.
3
Cyanide Insensitive Oxidase Confers Hydrogen Sulfide and Nitric Oxide Tolerance to Aerobic Respiration.
Antioxidants (Basel). 2024 Mar 21;13(3):383. doi: 10.3390/antiox13030383.
4
Meddling with Metal Sensors: Fur-Family Proteins as Signaling Hubs.
J Bacteriol. 2023 Apr 25;205(4):e0002223. doi: 10.1128/jb.00022-23. Epub 2023 Apr 3.
5
TGF-β/IFN-γ Antagonism in Subversion and Self-Defense of Phase II Coxiella burnetiiInfected Dendritic Cells.
Infect Immun. 2023 Feb 16;91(2):e0032322. doi: 10.1128/iai.00323-22. Epub 2023 Jan 23.
6
Bioenergetics and Reactive Nitrogen Species in Bacteria.
Int J Mol Sci. 2022 Jun 30;23(13):7321. doi: 10.3390/ijms23137321.
7
Heme A Synthase Deficiency Affects the Ability of to Adapt to a Nutrient-Limited Environment.
Int J Mol Sci. 2022 Jan 18;23(3):1033. doi: 10.3390/ijms23031033.
8
How Microbes Defend Themselves From Incoming Hydrogen Peroxide.
Front Immunol. 2021 Apr 27;12:667343. doi: 10.3389/fimmu.2021.667343. eCollection 2021.
9
SigB-regulated antioxidant functions in gram-positive bacteria.
World J Microbiol Biotechnol. 2021 Feb 5;37(3):38. doi: 10.1007/s11274-021-03004-7.
10
The Stress-Responsive Alternative Sigma Factor SigB of and Its Relatives: An Old Friend With New Functions.
Front Microbiol. 2020 Sep 15;11:1761. doi: 10.3389/fmicb.2020.01761. eCollection 2020.

本文引用的文献

1
Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species.
Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):745-50. doi: 10.1073/pnas.0307741100. Epub 2004 Jan 12.
2
Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis.
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13603-8. doi: 10.1073/pnas.2235180100. Epub 2003 Nov 3.
3
A supramolecular complex in the environmental stress signalling pathway of Bacillus subtilis.
Mol Microbiol. 2003 Sep;49(6):1657-69. doi: 10.1046/j.1365-2958.2003.03663.x.
5
A mechanism by which nitric oxide accelerates the rate of oxidative DNA damage in Escherichia coli.
Mol Microbiol. 2003 Jul;49(1):11-22. doi: 10.1046/j.1365-2958.2003.03530.x.
6
Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators.
Mol Microbiol. 2003 Apr;48(2):495-506. doi: 10.1046/j.1365-2958.2003.03445.x.
7
Global characterization of disulfide stress in Bacillus subtilis.
J Bacteriol. 2003 Mar;185(6):1967-75. doi: 10.1128/JB.185.6.1967-1975.2003.
10
Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron.
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16619-24. doi: 10.1073/pnas.252591299. Epub 2002 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验