Al-Sabi Ahmed, Lennartz Dirk, Ferber Michael, Gulyas Jozsef, Rivier Jean E F, Olivera Baldomero M, Carlomagno Teresa, Terlau Heinrich
Molecular and Cellular Neuropharmacology Group, Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany.
Biochemistry. 2004 Jul 13;43(27):8625-35. doi: 10.1021/bi0495681.
Venomous organisms have evolved a variety of structurally diverse peptide neurotoxins that target ion channels. Despite the lack of any obvious structural homology, unrelated toxins that interact with voltage-activated K(+) channels share a dyad motif composed of a lysine and a hydrophobic amino acid residue, usually a phenylalanine or a tyrosine. kappaM-Conotoxin RIIIK (kappaM-RIIIK), recently characterized from the cone snail Conus radiatus, blocks Shaker and TSha1 K(+) channels. The functional and structural study presented here reveals that kappaM-conotoxin RIIIK blocks voltage-activated K(+) channels with a novel pharmacophore that does not comprise a dyad motif. Despite the quite different amino acid sequence and no overlap in the pharmacological activity, we found that the NMR solution structure of kappaM-RIIIK in the C-terminal half is highly similar to that of mu-conotoxin GIIIA, a specific blocker of the skeletal muscle Na(+) channel Na(v)1.4. Alanine substitutions of all non-cysteine residues indicated that four amino acids of kappaM-RIIIK (Leu1, Arg10, Lys18, and Arg19) are key determinants for interaction with K(+) channels. Following the hypothesis that Leu1, the major hydrophobic amino acid determinant for binding, serves as the hydrophobic partner of a dyad motif, we investigated the effect of several mutations of Leu1 on the biological function of kappaM-RIIIK. Surprisingly, both the structural and mutational analysis suggested that, uniquely among well-characterized K(+) channel-targeted toxins, kappaM-RIIIK blocks voltage-gated K(+) channels with a pharmacophore that is not organized around a lysine-hydrophobic amino acid dyad motif.
有毒生物进化出了多种结构多样的靶向离子通道的肽类神经毒素。尽管缺乏明显的结构同源性,但与电压激活的钾离子通道相互作用的不相关毒素共享一个由赖氨酸和一个疏水氨基酸残基(通常是苯丙氨酸或酪氨酸)组成的二元基序。κM-芋螺毒素RIIIK(κM-RIIIK),最近从辐射芋螺中鉴定出来,可阻断Shaker和TSha1钾离子通道。本文所呈现的功能和结构研究表明,κM-芋螺毒素RIIIK通过一种不包含二元基序的新型药效团来阻断电压激活的钾离子通道。尽管氨基酸序列差异很大且药理活性没有重叠,但我们发现κM-RIIIK C端一半的核磁共振溶液结构与μ-芋螺毒素GIIIA高度相似,μ-芋螺毒素GIIIA是骨骼肌钠离子通道Na(v)1.4的特异性阻断剂。所有非半胱氨酸残基的丙氨酸取代表明,κM-RIIIK的四个氨基酸(Leu1、Arg10、Lys18和Arg19)是与钾离子通道相互作用的关键决定因素。根据Leu1作为结合的主要疏水氨基酸决定因素,作为二元基序的疏水伙伴这一假设,我们研究了Leu1的几种突变对κM-RIIIK生物学功能的影响。令人惊讶的是,结构和突变分析均表明,在特征明确的靶向钾离子通道的毒素中,κM-RIIIK独特地通过一种不围绕赖氨酸-疏水氨基酸二元基序组织的药效团来阻断电压门控钾离子通道。