Institute of Physiology, Christian-Albrechts-University Kiel, 24118 Kiel, Germany.
Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):1059-1064. doi: 10.1073/pnas.1813161116. Epub 2018 Dec 28.
The vast complexity of native heteromeric K channels is largely unexplored. Defining the composition and subunit arrangement of individual subunits in native heteromeric K channels and establishing their physiological roles is experimentally challenging. Here we systematically explored this "zone of ignorance" in molecular neuroscience. Venom components, such as peptide toxins, appear to have evolved to modulate physiologically relevant targets by discriminating among closely related native ion channel complexes. We provide proof-of-principle for this assertion by demonstrating that κM-conotoxin RIIIJ (κM-RIIIJ) from precisely targets "asymmetric" K channels composed of three K1.2 subunits and one K1.1 or K1.6 subunit with 100-fold higher apparent affinity compared with homomeric K1.2 channels. Our study shows that dorsal root ganglion (DRG) neurons contain at least two major functional K1.2 channel complexes: a heteromer, for which κM-RIIIJ has high affinity, and a putative K1.2 homomer, toward which κM-RIIIJ is less potent. This conclusion was reached by () covalent linkage of members of the mammalian Shaker-related K1 family to K1.2 and systematic assessment of the potency of κM-RIIIJ block of heteromeric K channel-mediated currents in heterologous expression systems; () molecular dynamics simulations of asymmetric K1 channels providing insights into the molecular basis of κM-RIIIJ selectivity and potency toward its targets; and () evaluation of calcium responses of a defined population of DRG neurons to κM-RIIIJ. Our study demonstrates that bioactive molecules present in venoms provide essential pharmacological tools that systematically target specific heteromeric K channel complexes that operate in native tissues.
天然异聚 K 通道的巨大复杂性在很大程度上尚未得到探索。定义天然异聚 K 通道中各个亚基的组成和亚基排列,并确定它们的生理作用,在实验上具有挑战性。在这里,我们系统地探索了分子神经科学中的这一“未知领域”。毒液成分,如肽毒素,似乎通过区分密切相关的天然离子通道复合物而进化为调节生理相关靶标。我们通过证明κM-芋螺毒素 RIIIJ(κM-RIIIJ)能够针对由三个 K1.2 亚基和一个 K1.1 或 K1.6 亚基组成的“不对称”K 通道,提供了这一说法的原理证明,与同聚 K1.2 通道相比,κM-RIIIJ 的表观亲和力高 100 倍。我们的研究表明,背根神经节 (DRG) 神经元至少包含两种主要的功能性 K1.2 通道复合物:一种异聚体,κM-RIIIJ 对其具有高亲和力,另一种是假定的 K1.2 同聚体,κM-RIIIJ 对其亲和力较低。这一结论是通过以下方法得出的:() 将哺乳动物 Shaker 相关 K1 家族的成员与 K1.2 共价连接,并系统评估 κM-RIIIJ 对异源表达系统中异质 K 通道介导电流的阻断效力;() 不对称 K1 通道的分子动力学模拟,深入了解 κM-RIIIJ 选择性和对其靶标的效力的分子基础;() 评估一组特定的 DRG 神经元对 κM-RIIIJ 的钙反应。我们的研究表明,毒液中存在的生物活性分子提供了必不可少的药理学工具,可系统地针对在天然组织中起作用的特定异质 K 通道复合物。