Zhu J, Lum P Y, Lamb J, GuhaThakurta D, Edwards S W, Thieringer R, Berger J P, Wu M S, Thompson J, Sachs A B, Schadt E E
Rosetta Inpharmatics, Seattle, WA, USA.
Cytogenet Genome Res. 2004;105(2-4):363-74. doi: 10.1159/000078209.
The reconstruction of genetic networks in mammalian systems is one of the primary goals in biological research, especially as such reconstructions relate to elucidating not only common, polygenic human diseases, but living systems more generally. Here we propose a novel gene network reconstruction algorithm, derived from classic Bayesian network methods, that utilizes naturally occurring genetic variations as a source of perturbations to elucidate the network. This algorithm incorporates relative transcript abundance and genotypic data from segregating populations by employing a generalized scoring function of maximum likelihood commonly used in Bayesian network reconstruction problems. The utility of this novel algorithm is demonstrated via application to liver gene expression data from a segregating mouse population. We demonstrate that the network derived from these data using our novel network reconstruction algorithm is able to capture causal associations between genes that result in increased predictive power, compared to more classically reconstructed networks derived from the same data.
哺乳动物系统中基因网络的重建是生物学研究的主要目标之一,特别是当这种重建不仅涉及阐明常见的多基因人类疾病,而且更广泛地涉及生命系统时。在此,我们提出一种源自经典贝叶斯网络方法的新型基因网络重建算法,该算法利用自然发生的遗传变异作为扰动源来阐明网络。通过采用贝叶斯网络重建问题中常用的广义最大似然评分函数,该算法整合了来自分离群体的相对转录本丰度和基因型数据。通过将该算法应用于来自分离小鼠群体的肝脏基因表达数据,证明了这种新型算法的实用性。我们证明,与从相同数据进行更经典重建的网络相比,使用我们的新型网络重建算法从这些数据中得出的网络能够捕捉基因之间的因果关联,从而提高预测能力。