Bender Aaron, Ranea-Robles Pablo, Williams Evan G, Mirzaian Mina, Heimel J Alexander, Levelt Christiaan N, Wanders Ronald J, Aerts Johannes M, Zhu Jun, Auwerx Johan, Houten Sander M, Argmann Carmen A
Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
J Inherit Metab Dis. 2025 Jul;48(4):e70045. doi: 10.1002/jimd.70045.
For many inborn errors of metabolism (IEM) the understanding of disease mechanisms remains limited, in part explaining their unmet medical needs. The expressivity of IEM disease phenotypes is affected by disease-modifying factors, including rare and common polygenic variation. We hypothesize that we can identify these modulating pathways using molecular signatures of IEM in combination with multiomic data and gene regulatory networks generated from non-IEM animal and human populations. We tested this approach by identifying and subsequently validating glucocorticoid signaling as a candidate modifier of mitochondrial fatty acid oxidation disorders, and recapitulating complement signaling as a modifier of inflammation in Gaucher disease. Our work describes a novel approach that can overcome the rare disease-rare data dilemma and reveal new IEM pathophysiology and potential drug targets using multiomics data in seemingly healthy populations.
对于许多先天性代谢缺陷病(IEM),对其疾病机制的理解仍然有限,这在一定程度上解释了它们未得到满足的医疗需求。IEM疾病表型的表达受到疾病修饰因子的影响,包括罕见和常见的多基因变异。我们假设,我们可以结合IEM的分子特征与从非IEM动物和人类群体生成的多组学数据及基因调控网络来识别这些调节途径。我们通过识别并随后验证糖皮质激素信号作为线粒体脂肪酸氧化障碍的候选修饰因子,以及重现补体信号作为戈谢病炎症的修饰因子来测试这种方法。我们的工作描述了一种新方法,该方法可以克服罕见病 - 罕见数据的困境,并利用看似健康人群的多组学数据揭示新的IEM病理生理学和潜在药物靶点。