Suppr超能文献

贝叶斯框架用于推断分离子代群体的基因型-表型图谱。

A Bayesian framework for inference of the genotype-phenotype map for segregating populations.

机构信息

The Jackson Laboratory, Bar Harbor, Maine 04609, USA.

出版信息

Genetics. 2011 Apr;187(4):1163-70. doi: 10.1534/genetics.110.123273. Epub 2011 Jan 17.

Abstract

Complex genetic interactions lie at the foundation of many diseases. Understanding the nature of these interactions is critical to developing rational intervention strategies. In mammalian systems hypothesis testing in vivo is expensive, time consuming, and often restricted to a few physiological endpoints. Thus, computational methods that generate causal hypotheses can help to prioritize targets for experimental intervention. We propose a Bayesian statistical method to infer networks of causal relationships among genotypes and phenotypes using expression quantitative trait loci (eQTL) data from genetically randomized populations. Causal relationships between network variables are described with hierarchical regression models. Prior distributions on the network structure enforce graph sparsity and have the potential to encode prior biological knowledge about the network. An efficient Monte Carlo method is used to search across the model space and sample highly probable networks. The result is an ensemble of networks that provide a measure of confidence in the estimated network topology. These networks can be used to make predictions of system-wide response to perturbations. We applied our method to kidney gene expression data from an MRL/MpJ × SM/J intercross population and predicted a previously uncharacterized feedback loop in the local renin-angiotensin system.

摘要

复杂的遗传相互作用是许多疾病的基础。了解这些相互作用的性质对于制定合理的干预策略至关重要。在哺乳动物系统中,体内假设检验既昂贵又耗时,并且通常仅限于少数生理终点。因此,生成因果假设的计算方法可以帮助确定实验干预的目标。我们提出了一种贝叶斯统计方法,使用来自遗传随机化群体的表达数量性状基因座 (eQTL) 数据来推断基因型和表型之间的因果关系网络。网络变量之间的因果关系用层次回归模型来描述。网络结构的先验分布强制图稀疏化,并有可能编码关于网络的先验生物学知识。一种有效的蒙特卡罗方法用于在模型空间中进行搜索,并对高度可能的网络进行采样。结果是一组网络,为估计的网络拓扑结构提供了置信度的度量。这些网络可用于预测系统对扰动的整体响应。我们将我们的方法应用于来自 MRL/MpJ×SM/J 杂交群体的肾脏基因表达数据,并预测了局部肾素-血管紧张素系统中以前未表征的反馈回路。

相似文献

1
A Bayesian framework for inference of the genotype-phenotype map for segregating populations.
Genetics. 2011 Apr;187(4):1163-70. doi: 10.1534/genetics.110.123273. Epub 2011 Jan 17.
2
Belief propagation in genotype-phenotype networks.
Stat Appl Genet Mol Biol. 2016 Mar;15(1):39-53. doi: 10.1515/sagmb-2015-0058.
3
Using stochastic causal trees to augment Bayesian networks for modeling eQTL datasets.
BMC Bioinformatics. 2011 Jan 6;12:7. doi: 10.1186/1471-2105-12-7.
5
Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.
PLoS Comput Biol. 2013;9(5):e1003068. doi: 10.1371/journal.pcbi.1003068. Epub 2013 May 23.
6
Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.
Methods Mol Biol. 2017;1488:319-335. doi: 10.1007/978-1-4939-6427-7_15.
7
Disentangling molecular relationships with a causal inference test.
BMC Genet. 2009 May 27;10:23. doi: 10.1186/1471-2156-10-23.
8
Learning gene networks under SNP perturbations using eQTL datasets.
PLoS Comput Biol. 2014 Feb 27;10(2):e1003420. doi: 10.1371/journal.pcbi.1003420. eCollection 2014 Feb.
9
Bayesian hierarchical graph-structured model for pathway analysis using gene expression data.
Stat Appl Genet Mol Biol. 2013 Jun;12(3):393-412. doi: 10.1515/sagmb-2013-0011.
10
High-confidence discovery of genetic network regulators in expression quantitative trait loci data.
Genetics. 2011 Mar;187(3):955-64. doi: 10.1534/genetics.110.124685. Epub 2011 Jan 6.

引用本文的文献

1
A Bayesian model selection approach to mediation analysis.
PLoS Genet. 2022 May 9;18(5):e1010184. doi: 10.1371/journal.pgen.1010184. eCollection 2022 May.
2
On the Role of Artificial Intelligence in Genomics to Enhance Precision Medicine.
Pharmgenomics Pers Med. 2020 Mar 19;13:105-119. doi: 10.2147/PGPM.S205082. eCollection 2020.
3
Robust pathway sampling in phenotype prediction. Application to triple negative breast cancer.
BMC Bioinformatics. 2020 Mar 11;21(Suppl 2):89. doi: 10.1186/s12859-020-3356-6.
4
High-Dimensional Bayesian Network Inference From Systems Genetics Data Using Genetic Node Ordering.
Front Genet. 2019 Dec 20;10:1196. doi: 10.3389/fgene.2019.01196. eCollection 2019.
5
A Microbe Associated with Sleep Revealed by a Novel Systems Genetic Analysis of the Microbiome in Collaborative Cross Mice.
Genetics. 2020 Mar;214(3):719-733. doi: 10.1534/genetics.119.303013. Epub 2020 Jan 2.
7
Estimation of high-dimensional directed acyclic graphs with surrogate intervention.
Biostatistics. 2020 Oct 1;21(4):659-675. doi: 10.1093/biostatistics/kxy080.
8
Bayesian Networks Illustrate Genomic and Residual Trait Connections in Maize ( L.).
G3 (Bethesda). 2017 Aug 7;7(8):2779-2789. doi: 10.1534/g3.117.044263.
9
Estimation of Directed Acyclic Graphs Through Two-stage Adaptive Lasso for Gene Network Inference.
J Am Stat Assoc. 2016;111(515):1004-1019. doi: 10.1080/01621459.2016.1142880. Epub 2016 Oct 18.
10
A new statistical framework for genetic pleiotropic analysis of high dimensional phenotype data.
BMC Genomics. 2016 Nov 7;17(1):881. doi: 10.1186/s12864-016-3169-1.

本文引用的文献

2
Uncovering genes and regulatory pathways related to urinary albumin excretion.
J Am Soc Nephrol. 2011 Jan;22(1):73-81. doi: 10.1681/ASN.2010050561. Epub 2010 Oct 28.
3
Critical reasoning on causal inference in genome-wide linkage and association studies.
Trends Genet. 2010 Dec;26(12):493-8. doi: 10.1016/j.tig.2010.09.002. Epub 2010 Oct 15.
4
Uncovering the genetic landscape for multiple sleep-wake traits.
PLoS One. 2009;4(4):e5161. doi: 10.1371/journal.pone.0005161. Epub 2009 Apr 10.
5
Reverse engineering the genotype-phenotype map with natural genetic variation.
Nature. 2008 Dec 11;456(7223):738-44. doi: 10.1038/nature07633.
6
Renin-angiotensin system revisited.
J Intern Med. 2008 Sep;264(3):224-36. doi: 10.1111/j.1365-2796.2008.01981.x.
7
Inferring causal phenotype networks from segregating populations.
Genetics. 2008 Jun;179(2):1089-100. doi: 10.1534/genetics.107.085167. Epub 2008 May 27.
8
9
Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge.
Stat Appl Genet Mol Biol. 2007;6:Article15. doi: 10.2202/1544-6115.1282. Epub 2007 May 29.
10
Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations.
PLoS Comput Biol. 2007 Apr 13;3(4):e69. doi: 10.1371/journal.pcbi.0030069. Epub 2007 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验