The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
Genetics. 2011 Apr;187(4):1163-70. doi: 10.1534/genetics.110.123273. Epub 2011 Jan 17.
Complex genetic interactions lie at the foundation of many diseases. Understanding the nature of these interactions is critical to developing rational intervention strategies. In mammalian systems hypothesis testing in vivo is expensive, time consuming, and often restricted to a few physiological endpoints. Thus, computational methods that generate causal hypotheses can help to prioritize targets for experimental intervention. We propose a Bayesian statistical method to infer networks of causal relationships among genotypes and phenotypes using expression quantitative trait loci (eQTL) data from genetically randomized populations. Causal relationships between network variables are described with hierarchical regression models. Prior distributions on the network structure enforce graph sparsity and have the potential to encode prior biological knowledge about the network. An efficient Monte Carlo method is used to search across the model space and sample highly probable networks. The result is an ensemble of networks that provide a measure of confidence in the estimated network topology. These networks can be used to make predictions of system-wide response to perturbations. We applied our method to kidney gene expression data from an MRL/MpJ × SM/J intercross population and predicted a previously uncharacterized feedback loop in the local renin-angiotensin system.
复杂的遗传相互作用是许多疾病的基础。了解这些相互作用的性质对于制定合理的干预策略至关重要。在哺乳动物系统中,体内假设检验既昂贵又耗时,并且通常仅限于少数生理终点。因此,生成因果假设的计算方法可以帮助确定实验干预的目标。我们提出了一种贝叶斯统计方法,使用来自遗传随机化群体的表达数量性状基因座 (eQTL) 数据来推断基因型和表型之间的因果关系网络。网络变量之间的因果关系用层次回归模型来描述。网络结构的先验分布强制图稀疏化,并有可能编码关于网络的先验生物学知识。一种有效的蒙特卡罗方法用于在模型空间中进行搜索,并对高度可能的网络进行采样。结果是一组网络,为估计的网络拓扑结构提供了置信度的度量。这些网络可用于预测系统对扰动的整体响应。我们将我们的方法应用于来自 MRL/MpJ×SM/J 杂交群体的肾脏基因表达数据,并预测了局部肾素-血管紧张素系统中以前未表征的反馈回路。