Suppr超能文献

一种用于推断基因表达与疾病之间因果关联的整合基因组学方法。

An integrative genomics approach to infer causal associations between gene expression and disease.

作者信息

Schadt Eric E, Lamb John, Yang Xia, Zhu Jun, Edwards Steve, Guhathakurta Debraj, Sieberts Solveig K, Monks Stephanie, Reitman Marc, Zhang Chunsheng, Lum Pek Yee, Leonardson Amy, Thieringer Rolf, Metzger Joseph M, Yang Liming, Castle John, Zhu Haoyuan, Kash Shera F, Drake Thomas A, Sachs Alan, Lusis Aldons J

机构信息

Rosetta Inpharmatics, Seattle, Washington 98109, USA.

出版信息

Nat Genet. 2005 Jul;37(7):710-7. doi: 10.1038/ng1589. Epub 2005 Jun 19.

Abstract

A key goal of biomedical research is to elucidate the complex network of gene interactions underlying complex traits such as common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integrates DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expression traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function relative to the complex traits under consideration. We show that this approach can predict transcriptional responses to single gene-perturbation experiments using gene-expression data in the context of a segregating mouse population. We also demonstrate the utility of this approach by identifying and experimentally validating the involvement of three new genes in susceptibility to obesity.

摘要

生物医学研究的一个关键目标是阐明复杂性状(如常见人类疾病)背后复杂的基因相互作用网络。在此,我们详细介绍一种多步骤程序,用于识别复杂性状的潜在关键驱动因素,该程序将DNA变异和基因表达数据与分离小鼠群体中的其他复杂性状数据整合在一起。通过系统地测试导致相对转录丰度变化的DNA变异是否在统计学上支持相对于所考虑的复杂性状的独立、因果或反应性功能,实现了将基因表达性状彼此之间以及相对于其他复杂性状进行排序。我们表明,这种方法可以在分离小鼠群体的背景下,使用基因表达数据预测对单基因扰动实验的转录反应。我们还通过鉴定并实验验证三个新基因参与肥胖易感性,证明了这种方法的实用性。

相似文献

1
An integrative genomics approach to infer causal associations between gene expression and disease.
Nat Genet. 2005 Jul;37(7):710-7. doi: 10.1038/ng1589. Epub 2005 Jun 19.
4
An integrative genomics approach to the reconstruction of gene networks in segregating populations.
Cytogenet Genome Res. 2004;105(2-4):363-74. doi: 10.1159/000078209.
5
Genetics of gene expression surveyed in maize, mouse and man.
Nature. 2003 Mar 20;422(6929):297-302. doi: 10.1038/nature01434.
6
Variations in DNA elucidate molecular networks that cause disease.
Nature. 2008 Mar 27;452(7186):429-35. doi: 10.1038/nature06757. Epub 2008 Mar 16.
8
Novel integrative genomics strategies to identify genes for complex traits.
Anim Genet. 2006 Aug;37 Suppl 1(Suppl 1):18-23. doi: 10.1111/j.1365-2052.2006.01473.x.
9
Moving toward a system genetics view of disease.
Mamm Genome. 2007 Jul;18(6-7):389-401. doi: 10.1007/s00335-007-9040-6. Epub 2007 Jul 26.
10
Mapping the genetic architecture of gene expression in human liver.
PLoS Biol. 2008 May 6;6(5):e107. doi: 10.1371/journal.pbio.0060107.

引用本文的文献

1
Transcriptome-wide root causal inference.
PLoS Comput Biol. 2025 Sep 2;21(9):e1013461. doi: 10.1371/journal.pcbi.1013461. eCollection 2025 Sep.
3
A Multiomic Network Approach to Uncover Disease Modifying Mechanisms of Inborn Errors of Metabolism.
J Inherit Metab Dis. 2025 Jul;48(4):e70045. doi: 10.1002/jimd.70045.
6
A multiomic network approach uncovers disease modifying mechanisms of inborn errors of metabolism.
bioRxiv. 2025 Feb 20:2025.02.19.639093. doi: 10.1101/2025.02.19.639093.
7
Predicting the genetic component of gene expression using gene regulatory networks.
Bioinform Adv. 2024 Nov 23;4(1):vbae180. doi: 10.1093/bioadv/vbae180. eCollection 2024.
8
Revealing host genome-microbiome networks underlying feed efficiency in dairy cows.
Sci Rep. 2024 Oct 30;14(1):26060. doi: 10.1038/s41598-024-77782-z.
10
A twin analysis to estimate genetic and environmental factors contributing to variation in weighted gene co-expression network module eigengenes.
Am J Med Genet B Neuropsychiatr Genet. 2025 Jan;198(1):e33003. doi: 10.1002/ajmg.b.33003. Epub 2024 Aug 9.

本文引用的文献

1
2
Genomic analysis of metabolic pathway gene expression in mice.
Genome Biol. 2005;6(7):R59. doi: 10.1186/gb-2005-6-7-r59. Epub 2005 Jul 1.
3
A practical false discovery rate approach to identifying patterns of differential expression in microarray data.
Bioinformatics. 2005 Jun 1;21(11):2684-90. doi: 10.1093/bioinformatics/bti407. Epub 2005 Mar 29.
5
Methodological aspects of the genetic dissection of gene expression.
Bioinformatics. 2005 May 15;21(10):2383-93. doi: 10.1093/bioinformatics/bti241.
7
Genetic inheritance of gene expression in human cell lines.
Am J Hum Genet. 2004 Dec;75(6):1094-105. doi: 10.1086/426461. Epub 2004 Oct 21.
8
A comprehensive transcript index of the human genome generated using microarrays and computational approaches.
Genome Biol. 2004;5(10):R73. doi: 10.1186/gb-2004-5-10-r73. Epub 2004 Sep 23.
9
Genomic analysis of regulatory network dynamics reveals large topological changes.
Nature. 2004 Sep 16;431(7006):308-12. doi: 10.1038/nature02782.
10
Genetic analysis of genome-wide variation in human gene expression.
Nature. 2004 Aug 12;430(7001):743-7. doi: 10.1038/nature02797. Epub 2004 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验