Heilmann Ingo, Pidkowich Mark S, Girke Thomas, Shanklin John
Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA.
Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10266-71. doi: 10.1073/pnas.0402200101. Epub 2004 Jul 6.
The functionality, substrate specificity, and regiospecificity of enzymes typically evolve by the accumulation of mutations in the catalytic portion of the enzyme until new properties arise. However, emerging evidence suggests enzyme functionality can also be influenced by metabolic context. When the plastidial Arabidopsis 16:0Delta7 desaturase FAD5 (ADS3) was retargeted to the cytoplasm, regiospecificity shifted 70-fold, Delta7 to Delta9. Conversely, retargeting of two related cytoplasmic 16:0Delta9 Arabidopsis desaturases (ADS1 and ADS2) to the plastid, shifted regiospecificity approximately 25-fold, Delta9 to Delta7. All three desaturases exhibited Delta9 regiospecificity when expressed in yeast, with desaturated products found predominantly on phosphatidylcholine. Coexpression of each enzyme with cucumber monogalactosyldiacylglycerol (MGDG) synthase in yeast conferred Delta7 desaturation, with 16:1Delta7 accumulating specifically on the plastidial lipid MGDG. Positional analysis is consistent with ADS desaturation of 16:0 on MGDG. The lipid headgroup acts as a molecular switch for desaturase regiospecificity. FAD5 Delta7 regiospecificity is thus attributable to plastidial retargeting of the enzyme by addition of a transit peptide to a cytoplasmic Delta9 desaturase rather than the numerous sequence differences within the catalytic portion of ADS enzymes. The MGDG-dependent desaturase activity enabled plants to synthesize 16:1Delta7 and its abundant metabolite, 16:3Delta(7,10,13). Bioinformatics analysis of the Arabidopsis genome identified 239 protein families that contain members predicted to reside in different subcellular compartments, suggesting alternative targeting is widespread. Alternative targeting of bifunctional or multifunctional enzymes can exploit eukaryotic subcellular organization to create metabolic diversity by permitting isozymes to interact with different substrates and thus create different products in alternate compartments.
酶的功能、底物特异性和区域特异性通常通过酶催化部分突变的积累而进化,直到产生新的特性。然而,新出现的证据表明,酶的功能也会受到代谢环境的影响。当拟南芥质体16:0Δ7去饱和酶FAD5(ADS3)被重新定位到细胞质中时,区域特异性发生了70倍的变化,从Δ7变为Δ9。相反,将两种相关的细胞质16:0Δ9拟南芥去饱和酶(ADS1和ADS2)重新定位到质体中,区域特异性发生了约25倍的变化,从Δ9变为Δ7。当在酵母中表达时,这三种去饱和酶均表现出Δ9区域特异性,去饱和产物主要存在于磷脂酰胆碱上。每种酶与黄瓜单半乳糖基二酰基甘油(MGDG)合酶在酵母中共表达时,可产生Δ7去饱和作用,16:1Δ7特异性积累在质体脂质MGDG上。位置分析与MGDG上16:0的ADS去饱和作用一致。脂质头部基团充当去饱和酶区域特异性的分子开关。因此,FAD5的Δ7区域特异性可归因于通过向细胞质Δ9去饱和酶添加转运肽而将该酶重新定位到质体中,而不是ADS酶催化部分内的众多序列差异。依赖MGDG的去饱和酶活性使植物能够合成16:1Δ7及其丰富的代谢产物16:3Δ(7,10,13)。对拟南芥基因组的生物信息学分析确定了239个蛋白质家族,其成员预计位于不同的亚细胞区室,这表明替代靶向作用很普遍。双功能或多功能酶的替代靶向作用可以利用真核生物的亚细胞组织,通过允许同工酶与不同底物相互作用,从而在不同区室中产生不同产物,来创造代谢多样性。