Suppr超能文献

稀疏实验时间序列数据集上共时建模算法的比较

Comparison of Co-Temporal Modeling Algorithms on Sparse Experimental Time Series Data Sets.

作者信息

Allen Edward E, Norris James L, John David J, Thomas Stan J, Turkett William H, Fetrow Jacquelyn S

机构信息

Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109.

Department of Computer Science, Wake Forest University, Winston-Salem, NC 27109.

出版信息

Proc IEEE Int Symp Bioinformatics Bioeng. 2010 May-Jun;2010:79-85. doi: 10.1109/BIBE.2010.21. Epub 2010 Jul 26.

Abstract

Multiple approaches for reverse-engineering biological networks from time-series data have been proposed in the computational biology literature. These approaches can be classified by their underlying mathematical algorithms, such as Bayesian or algebraic techniques, as well as by their time paradigm, which includes next-state and co-temporal modeling. The types of biological relationships, such as parent-child or siblings, discovered by these algorithms are quite varied. It is important to understand the strengths and weaknesses of the various algorithms and time paradigms on actual experimental data. We assess how well the co-temporal implementations of three algorithms, continuous Bayesian, discrete Bayesian, and computational algebraic, can 1) identify two types of entity relationships, parent and sibling, between biological entities, 2) deal with experimental sparse time course data, and 3) handle experimental noise seen in replicate data sets. These algorithms are evaluated, using the shuffle index metric, for how well the resulting models match literature models in terms of siblings and parent relationships. Results indicate that all three co-temporal algorithms perform well, at a statistically significant level, at finding sibling relationships, but perform relatively poorly in finding parent relationships.

摘要

计算生物学文献中已经提出了多种从时间序列数据反向构建生物网络的方法。这些方法可以根据其基础数学算法进行分类,如贝叶斯或代数技术,也可以根据其时序范式进行分类,其中包括下一状态和共时建模。这些算法所发现的生物关系类型,如亲子或兄弟姐妹关系,差异很大。了解各种算法和时序范式在实际实验数据上的优缺点很重要。我们评估了三种算法(连续贝叶斯算法、离散贝叶斯算法和计算代数算法)的共时实现方式在以下方面的表现:1)识别生物实体之间的两种实体关系,即亲子关系和兄弟姐妹关系;2)处理实验性稀疏时间进程数据;3)处理重复数据集中出现的实验噪声。使用洗牌指数度量来评估这些算法,看其生成的模型在兄弟姐妹关系和亲子关系方面与文献模型的匹配程度。结果表明,所有三种共时算法在发现兄弟姐妹关系方面均表现良好,具有统计学显著性,但在发现亲子关系方面表现相对较差。

相似文献

1
Comparison of Co-Temporal Modeling Algorithms on Sparse Experimental Time Series Data Sets.稀疏实验时间序列数据集上共时建模算法的比较
Proc IEEE Int Symp Bioinformatics Bioeng. 2010 May-Jun;2010:79-85. doi: 10.1109/BIBE.2010.21. Epub 2010 Jul 26.
6
Reconstructing Causal Biological Networks through Active Learning.通过主动学习重建因果生物网络。
PLoS One. 2016 Mar 1;11(3):e0150611. doi: 10.1371/journal.pone.0150611. eCollection 2016.

本文引用的文献

3
KEGG for linking genomes to life and the environment.京都基因与基因组百科全书,用于将基因组与生命及环境相联系。
Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4. doi: 10.1093/nar/gkm882. Epub 2007 Dec 12.
4
Inferring cellular networks--a review.推断细胞网络——综述
BMC Bioinformatics. 2007 Sep 27;8 Suppl 6(Suppl 6):S5. doi: 10.1186/1471-2105-8-S6-S5.
5
Reverse engineering discrete dynamical systems from data sets with random input vectors.
J Comput Biol. 2006 Oct;13(8):1435-56. doi: 10.1089/cmb.2006.13.1435.
7
Interferon signalling network in innate defence.天然免疫防御中的干扰素信号网络。
Cell Microbiol. 2006 Jun;8(6):907-22. doi: 10.1111/j.1462-5822.2006.00716.x.
8
Algebraic dependency models of protein signal transduction networks from time-series data.
J Theor Biol. 2006 Jan 21;238(2):317-30. doi: 10.1016/j.jtbi.2005.05.010. Epub 2005 Jul 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验