Weidner Felix M, Schwab Julian D, Werle Silke D, Ikonomi Nensi, Lausser Ludwig, Kestler Hans A
Institute of Medical Systems Biology, Ulm University, Ulm 89069, Germany.
International Graduate School of Molecular Medicine, Ulm University, Ulm 89069, Germany.
Bioinformatics. 2021 Oct 25;37(20):3530-3537. doi: 10.1093/bioinformatics/btab277.
Interaction graphs are able to describe regulatory dependencies between compounds without capturing dynamics. In contrast, mathematical models that are based on interaction graphs allow to investigate the dynamics of biological systems. However, since dynamic complexity of these models grows exponentially with their size, exhaustive analyses of the dynamics and consequently screening all possible interventions eventually becomes infeasible. Thus, we designed an approach to identify dynamically relevant compounds based on the static network topology.
Here, we present a method only based on static properties to identify dynamically influencing nodes. Coupling vertex betweenness and determinative power, we could capture relevant nodes for changing dynamics with an accuracy of 75% in a set of 35 published logical models. Further analyses of the selected compounds' connectivity unravelled a new class of not highly connected nodes with high impact on the networks' dynamics, which we call gatekeepers. We validated our method's working concept on logical models, which can be readily scaled up to complex interaction networks, where dynamic analyses are not even feasible.
Code is freely available at https://github.com/sysbio-bioinf/BNStatic.
Supplementary data are available at Bioinformatics online.
相互作用图能够描述化合物之间的调控依赖性,但无法捕捉动态变化。相比之下,基于相互作用图的数学模型能够研究生物系统的动态变化。然而,由于这些模型的动态复杂性随其规模呈指数增长,对动态变化进行详尽分析并因此筛选所有可能的干预措施最终变得不可行。因此,我们设计了一种基于静态网络拓扑结构来识别动态相关化合物的方法。
在此,我们提出一种仅基于静态属性来识别动态影响节点的方法。通过结合顶点介数和决定性力量,我们能够在一组35个已发表的逻辑模型中,以75%的准确率捕捉到改变动态的相关节点。对所选化合物连接性的进一步分析揭示了一类对网络动态有高影响但连接性不高的新节点,我们将其称为“守门人”。我们在逻辑模型上验证了我们方法的工作概念,该方法可轻松扩展到复杂的相互作用网络,而在这些网络中进行动态分析甚至是不可行的。
代码可在https://github.com/sysbio-bioinf/BNStatic上免费获取。
补充数据可在《生物信息学》在线获取。