Léger Mélissa, Sidani Sacha, Brakier-Gingras Léa
Département de Biochimie, Université de Montréal, 2900, boul. Edouard-Montpetit, D-353, Québec, H3T 1J4, Canada.
RNA. 2004 Aug;10(8):1225-35. doi: 10.1261/rna.7670704. Epub 2004 Jul 9.
HIV-1 uses a programmed -1 ribosomal frameshift to produce the precursor of its enzymes. This frameshift occurs at a specific slippery sequence followed by a stimulatory signal, which was recently shown to be a two-stem helix, for which a three-purine bulge separates the upper and lower stems. In the present study, we investigated the response of the bacterial ribosome to this signal, using a translation system specialized for the expression of a firefly luciferase reporter. The HIV-1 frameshift region was inserted at the beginning of the coding sequence of the luciferase gene, such that its expression requires a -1 frameshift. Mutations that disrupt the upper or the lower stem of the frameshift stimulatory signal or replace the purine bulge with pyrimidines decreased the frameshift efficiency, whereas compensatory mutations that re-form both stems restored the frame-shift efficiency to near wild-type level. These mutations had the same effect in a eukaryotic translation system, which shows that the bacterial ribosome responds like the eukaryote ribosome to the HIV-1 frameshift stimulatory signal. Also, we observed, in contrast to a previous report, that a stop codon immediately 3' to the slippery sequence does not decrease the frameshift efficiency, ruling out a proposal that the frameshift involves the deacylated-tRNA and the peptidyl-tRNA in the E and P sites of the ribosome, rather than the peptidyl-tRNA and the aminoacyl-tRNA in the P and A sites, as commonly assumed. Finally, mutations in 16S ribosomal RNA that facilitate the accommodation of the incoming aminoacyl-tRNA in the A site decreased the frameshift efficiency, which supports a previous suggestion that the frameshift occurs when the aminoacyl-tRNA occupies the A/T entry site.
人类免疫缺陷病毒1型(HIV-1)利用程序性-1核糖体移码来产生其酶的前体。这种移码发生在一个特定的滑序列之后,接着是一个刺激信号,最近发现该信号是一个双茎螺旋结构,其中一个三嘌呤凸起将上下茎分开。在本研究中,我们使用专门用于表达萤火虫荧光素酶报告基因的翻译系统,研究了细菌核糖体对该信号的反应。HIV-1移码区域被插入到荧光素酶基因编码序列的开头,使得其表达需要一个-1移码。破坏移码刺激信号的上茎或下茎,或用嘧啶取代嘌呤凸起的突变会降低移码效率,而重新形成两个茎的补偿性突变则将移码效率恢复到接近野生型水平。这些突变在真核翻译系统中具有相同的效果,这表明细菌核糖体对HIV-1移码刺激信号的反应与真核核糖体相似。此外,与之前的一份报告相反,我们观察到,滑序列下游紧挨着的一个终止密码子不会降低移码效率,排除了一种观点,即移码涉及核糖体E位和P位的脱酰基tRNA和肽基tRNA,而不是如通常所认为的P位和A位的肽基tRNA和氨酰tRNA。最后,16S核糖体RNA中的突变促进了进入的氨酰tRNA在A位的容纳,降低了移码效率,这支持了之前的一种观点,即当氨酰tRNA占据A/T进入位点时发生移码。