Suppr超能文献

使用小波变换和模糊神经网络从动态心电图中检测室性早搏。

Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG.

作者信息

Shyu Liang-Yu, Wu Ying-Hsuan, Hu Weichih

机构信息

Department of Biomedical Engineering, Chung Yuan Christian University, 22 Pu-Jen, Pu-chung Li, Chung Li 32023, Taiwan, ROC.

出版信息

IEEE Trans Biomed Eng. 2004 Jul;51(7):1269-73. doi: 10.1109/TBME.2004.824131.

Abstract

A novel method for detecting ventricular premature contraction (VPC) from the Holter system is proposed using wavelet transform (WT) and fuzzy neural network (FNN). The basic ideal and major advantage of this method is to reuse information that is used during QRS detection, a necessary step for most ECG classification algorithm, for VPC detection. To reduce the influence of different artifacts, the filter bank property of quadratic spline WT is explored. The QRS duration in scale three and the area under the QRS complex in scale four are selected as the characteristic features. It is found that the R wave amplitude has a marked influence on the computation of proposed characteristic features. Thus, it is necessary to normalize these features. This normalization process can reduce the effect of alternating R wave amplitude and achieve reliable VPC detection. After normalization and excluding the left bundle branch block beats, the accuracies for VPC classification using FNN is 99.79%. Features that are extracted using quadratic spline wavelet were used successfully by previous investigators for QRS detection. In this study, using the same wavelet, it is demonstrated that the proposed feature extraction method from different WT scales can effectively eliminate the influence of high and low-frequency noise and achieve reliable VPC classification. The two primary advantages of using same wavelet for QRS detection and VPC classification are less computation and less complexity during actual implementation.

摘要

提出了一种利用小波变换(WT)和模糊神经网络(FNN)从动态心电图系统中检测室性早搏(VPC)的新方法。该方法的基本理念和主要优点是重新利用在QRS波检测过程中所使用的信息(这是大多数心电图分类算法的必要步骤)来进行VPC检测。为了减少不同伪迹的影响,研究了二次样条小波的滤波器组特性。选择尺度三的QRS波持续时间和尺度四的QRS波群下面积作为特征。发现R波振幅对所提出特征的计算有显著影响。因此,有必要对这些特征进行归一化。这种归一化过程可以减少交替R波振幅的影响并实现可靠的VPC检测。归一化并排除左束支传导阻滞搏动后,使用FNN进行VPC分类的准确率为99.79%。先前的研究人员成功地使用二次样条小波提取的特征进行QRS波检测。在本研究中,使用相同的小波,证明了从不同小波尺度提出的特征提取方法可以有效消除高频和低频噪声的影响并实现可靠的VPC分类。在QRS波检测和VPC分类中使用相同小波的两个主要优点是在实际实现过程中计算量较小且复杂度较低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验