Suppr超能文献

从三维磁共振数据中自动分割坏死股骨头。

Automated segmentation of necrotic femoral head from 3D MR data.

作者信息

Zoroofi Reza A, Sato Yoshinobu, Nishii Takashi, Sugano Nobuhiko, Yoshikawa Hideki, Tamura Shinichi

机构信息

Department of Electrical and Computer Engineering, Faculty of Engineering, Center of Excellence for Control and Intelligent Processing, University of Tehran, Tehran 14395/515, Iran.

出版信息

Comput Med Imaging Graph. 2004 Jul;28(5):267-78. doi: 10.1016/j.compmedimag.2004.03.004.

Abstract

Segmentation of diseased organs is an important topic in computer assisted medical image analysis. In particular, automatic segmentation of necrotic femoral head is of importance for various corresponding clinical tasks including visualization, quantitative assessment, early diagnosis and adequate management of patients suffering from avascular necrosis of the femoral head (ANFH). Early diagnosis and treatment of ANFH is crucial since the disease occurs in relatively young individuals with an average age of 20-50, and since treatment options for more advanced disease are frequently unsuccessful. The present paper describes several new techniques and software for automatic segmentation of necrotic femoral head based on clinically obtained multi-slice T1-weighted MR data. In vivo MR data sets of 50 actual patients are used in the study. An automatic method built up to manage the segmentation task according to image intensity of bone tissues, shape of the femoral head, and other characters. The processing scheme consisted of the following five steps. (1) Rough segmentation of non-necrotic lesions of the femur by applying a 3D gray morphological operation and a 3D region growing technique. (2) Fitting a 3D ellipse to the femoral head by a new approach utilizing the constraint of the shape of the femur, and employing a principle component analysis and a simulated annealing technique. (3) Estimating the femoral neck location, and also femoral head axis by integrating anatomical information of the femur and boundary of estimated 3D ellipse. (4) Removal of non-bony tissues around the femoral neck and femoral head ligament by utilizing the estimated femoral neck axis. (5) Classification of necrotic lesions inside the estimated femoral head by a k-means technique. The above method was implemented in a Microsoft Windows software package. The feasibility of this method was tested on the data sets of 50 clinical cases (3000 MR images).

摘要

病变器官的分割是计算机辅助医学图像分析中的一个重要课题。特别是,坏死股骨头的自动分割对于各种相应的临床任务至关重要,包括股骨头缺血性坏死(ANFH)患者的可视化、定量评估、早期诊断和适当管理。ANFH的早期诊断和治疗至关重要,因为该疾病发生在平均年龄为20 - 50岁的相对年轻个体中,而且对于更晚期疾病的治疗选择往往不成功。本文描述了几种基于临床获取的多层T1加权MR数据自动分割坏死股骨头的新技术和软件。该研究使用了50名实际患者的体内MR数据集。建立了一种自动方法,根据骨组织的图像强度、股骨头的形状和其他特征来管理分割任务。处理方案包括以下五个步骤。(1)通过应用3D灰度形态学操作和3D区域生长技术对股骨的非坏死病变进行粗略分割。(2)通过一种利用股骨形状约束的新方法,采用主成分分析和模拟退火技术将一个3D椭圆拟合到股骨头。(3)通过整合股骨的解剖信息和估计的3D椭圆边界来估计股骨颈位置以及股骨头轴线。(4)利用估计的股骨颈轴线去除股骨颈和股骨头韧带周围的非骨组织。(5)通过k均值技术对估计股骨头内的坏死病变进行分类。上述方法在一个Microsoft Windows软件包中实现。该方法的可行性在50个临床病例(3000幅MR图像)的数据集上进行了测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验